Distributed Security Enforcement for Trusted Cluster and Grid Computing

Keynote address at the IEEE International Conference on Cluster Computing (Cluster 2003), Hong Kong, Dec. 2, 2003

Kai Hwang

Internet and Grid Computing Lab
University of Southern California
Los Angeles, CA. 90089 USA
Presentation Outline:

1. Distributed GridSec Architecture
2. Virtual Private Networks for Distributed Security Enforcement
3. Anomaly Intrusion Detection with Datamining over Network Traffic
5. Wireless Access Control in Grid Computing
Evolutinal Path of Network-based Computing
to eliminate Resource Islands

Grid
grid://…

Web
http://..........
Trust, Security, and Privacy

- **Trust vs. Risk** – The foundation of security and privacy in both human society and Cyberspace

- **Distributed Computing Security** –
 More effective with a centralized policy enforced with a distributed control

- **Internet Privacy** – Must be protected with tradeoffs between security constraints and privacy demand
Security vs. Scalability

A distributed security system supporting fine-grain resource access with automatic intrusion prevention, detection, and responses based on dynamic security policies, adaptive cryptographic engines, privacy protection, and special network security interfaces, etc.

- Clusters/Intranets protected by gateway firewalls under a static policy with fixed cryptography and privacy protection.
- Web sites or LANs with limited security or privacy protection.

Increasing Security

No Protection

Fully Secured

Increasing Scalability

Web sites/LANs

Clusters/Intranets

Grids/Internet
Distributed GridSec Architecture

Step 1: Intrusion detected by a local micro-firewall
Step 2: All security managers alerted with the intrusion
Step 3: Security managers broadcast response command to all hosts under their jurisdiction.

(Source: Hwang, et al [1])
GridSec Design Objectives:

- Remove the security barrier hindering distributed grid computing - Offering a new trust model
- GridSec offers distributed intelligence in trust management on top of Globus, AppLes, NimRod etc.
- Dynamic grid resource allocation optimized with respect to computing power, security demand, and cost limit
- Benefiting E-commerce, digital government, public safety, and global economy over the Internet using GridSec-based VPN tunneling
USC NetShield Defense System
Protecting Grid Computing Resources
GridSec VPN : Combining both IPSec and MPLS Features for Federated Security

A VPN specially configured on a public Infrastructure based on tunneling at the IPSec network layer. Same policies as a private network supported by service provider and using IPSec, MPLS, PKI, GridSec, attribute certificates, etc.
Secure Grid Resource Management supported by VPN

Step 1: Two-way authentication and User request submission to resource manager (RMgr) in Grid resource site F (GRS F).

Step 2: RMgr in GRS F broadcast this request RMgrs in other GRSs.

Step 3: RMgrs in other GRSs send reply to RMgr in GRS F with the current available resource information.

Step 4: RMgr in GRS F generates several possible resource allocation solutions based on the received information, and sent back to user.

Step 5: User selects one solution based on its computing power requirement and budget constraints, and reply to RMgr in GRS F.

Step 6: Suppose user selects a resource allocation combination $\{A, E, F\}$, VPN connections are built between them, and user application is executed at these three GRSs.

Step 7: RMgr in GRS F monitored the execution of user application and update the trust vector according to the execution quality.

Step 8: Trust propagation: TMgr in each GRS broadcasts its trust vector periodically. TMgrs in other GRSs will update their trust vector accordingly.
Developing Virtual Private Networks for Securing Grid Computing

- Create encrypted tunnels between private networks used to form the Grid computing infrastructure
- The GridSec project chooses an approach combining the advantages of both IPsec-based and MPLS-based VPNs
- Aimed to satisfy the IPv6 standards proposed for both wired and wireless networks for the next-generation Internet

(Reference: Hwang, et al [1])
GridSec VPN Design: Built with Encrypted Tunnels, IPSec, and PKI over Grid or P2P Resource Sites

<table>
<thead>
<tr>
<th>Protocol In VPN</th>
<th>Applications</th>
<th>Security Level</th>
<th>Security Mechanisms</th>
<th>Where in Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPSec VPN</td>
<td>Site-to-site VPNs, off-net VPNs, extranets, sessions (DSL, dial-in, etc.)</td>
<td>High</td>
<td>Strong encryption (3DES), data authentication (HMAC and SHA-1), user authentication (RADIUS and PKI)</td>
<td>Best at local loop and Edge, apply IPSec tunneling and encryption</td>
</tr>
<tr>
<td>MPLS VPN</td>
<td>Site-to-site VPNs</td>
<td>Ultra High</td>
<td>“Tunnel” between end-points with same VPN ID</td>
<td>Best within an ISP’s core network</td>
</tr>
<tr>
<td>GridSec VPN</td>
<td>VPNs built over distributed Grid or P2P networks with multiple resource sites</td>
<td>Ultra High</td>
<td>IPSec with multi-site authentication, VPN tunnels at network layer and using PKI, AC, GSI, etc.</td>
<td>Intranet or extranet within a common virtual organization</td>
</tr>
</tbody>
</table>
Anomaly-based IDS Architecture

- Audit data
- Data preprocessor
- Feature extraction
- Data mining Engine
- Rules from real-time traffic
- Attack-free episode rules
- Signature Database
- Intrusion Detection Engine
- Alarm generator
- Alarm generation
- Security policy
- Normal profile database

(Ref.: Qin and Hwang [3])
Testing of the Base-Support Mining Algorithm on Normal TCP Traffic Connections from the 1999 DARPA Intrusion Detection Evaluation Data Sets collected in the first 10 Days

Using our base-support mining algorithm with a minimum confidence value of 0.6 and a window size of 30 sec, compared with using Lee’s Level-wise mining algorithm.
Pruning of Ineffective Episode Rules

- **Transposition Law:** The rule: \(L_1, L_2, \ldots, L_n \rightarrow R_1, \ldots, R_m \)

 is more effective than using the rule:

 \[L_1, L_2, \ldots, L_{n-1} \rightarrow L_n, R_1, \ldots, R_m \]

- **Elimination Law:** The rule \(L_1, L_2 \rightarrow R_1 (c_1, s_1) \) is less effective than using:

 \(L_2 \rightarrow R_1 (c_2, s_2), \) if \(c_1 \approx c_2 \)

- **Transitive Reconstruction Law:** The rule:

 \(L_1 \rightarrow R_1, R_2 \)

 becomes ineffective, if we have the following rules:

 \(L_1 \rightarrow R_1 \) and \(R_1 \rightarrow R_2 \) already in the rule set
Effects of Pruning on the Growth of Frequent Episode Rules for Inter-LAN and Intra-LAN Traffic Events

The base-support = 0.1, the minimum confidence = 0.6, the reference attributes = destination, and axis attributes = service
Anomaly Intrusion Detection Rate

Intrusive attacks detected by single packet per connection versus checking the frequent episode rules
Effect of Pruning on Reducing the False Alarm Rate in Anomaly Intrusion Detection

Blue bar: Detection without rule pruning
Purple bar: Detection with rule pruning
Intrusion Response Strategies for Defending against DDoS Attacks

1. Drop Pack
2. Block Host IP

DDoS

Single-Packet Attack

1. Buffer Packet,
2. Limit Resource
3. Lower Priority
4. Drop Packet
5. Denial Request from Attacker
6. Block IP

Multiple-Packet Attack

1. Lower Processes Priority or
or Limit Resource Usage
2. Kill Processes
3. Clean Up Service Table or Memory Usage
4. Restart Service
5. Denial Request from Attacker
6. Block IP

1. Trace Back
2. Push back (The Internet)
Intrusion Response Strategies for Defending against DDoS Attacks
Intrusion Response Strategies for Defending against DDoS Attacks
Intrusion Response Strategies for Defending against DDoS Attacks
Optimal or Suboptimal Resource Allocation Vectors \((x_1, x_2)\) with different Performance/Cost Ratios.
SARA: A Trust Model for Securing Grid Resources Allocation

- GRS\(_i\)
- Local Resource Monitor
- Resource Allocator
- Trust Manager
- User Interface
- Authentication Manager
- Security Manager for GRS\(_i\)
Example: Allocating Resources from Two Grid Sites

Application Demand: \((P_0, T_0, C_0) = (4\text{Tflops, 0.6, } \$2.25\text{M})\)

Resource Sit No. 1: \(R_1 = (1.6\text{Tflops, 0.8, } \$500\text{K, 6 hosts})\)
Resource Sit No. 2: \(R_2 = (1.2\text{Tflops, 0.7, } \$220\text{K, 5 hosts})\)

Objective function (Integer Programming):

\[P = \sum t_i p_i x_i = 0.8 \times 1.6 x_1 + 0.7 \times 1.2 x_2 = 1.28 x_1 + 0.84 x_2 \]

Subjective to the following constraints:

\[c_1 x_1 + c_2 x_2 = 500 x_1 + 220 x_2 \leq 2,250\text{K} \]
\[p_1 x_1 + p_2 x_2 = 1.6 x_1 + 1.2 x_2 \geq 4\text{Tflops} \]
\[0 \leq x_1 \leq 6 \text{ and } 0 \leq x_2 \leq 5 \]
Wireless Access Control of Grid Resources

- Air interfaces, admission control, disconnection handling, wireless PKI, security binding, and QoS all demand extensive R/D
- The GridSec VPN supports both wired and wireless communications in distributed cluster, grid, and pervasive applications
The Architecture for Wireless Connection Admission Control

Allocate the bandwidth to satisfy the given QoS and security requirements.
Secure Connection Admission based on Effective Bandwidth Allocation

Maximum number of admissible connections under different traffic condition. PB: Peak bandwidth method with zero drop rate, EB1: Effective bandwidth method 1 with 0.1% loss probability, EB2: Effective bandwidth method-2 with 1% loss probability.)
Maximum Number of Admissible Connections

EB1: Effective bandwidth method with 0.1% loss probability and
EB2: Effective bandwidth method with 1% loss probability),
PB: Peak bandwidth allocation method

2/17/2004, Kai Hwang, USC
GridSec Research Team at USC and our International Collaborators:

- Sponsored by a NSF/ITR Research Grant in the USA
- **Principal Investigator:** Kai Hwang at USC
 Co-PI: Clifford Neuman at Information Science Institute, USC
- **Post-doctorial Researchers at ISI/USC**
 Dr. Tatyana Ryutov and Dr. Dongho Kim
- **Research Assistants at USC EE and CS Departments:**
 Min Qin, Shanshan Song, Yongjin Kim, Rakesh Rajbanshi,
 Ching-Hua Chuan, Gurpreet Grewal, Mikin Macwan,
 Narayana Jayaram, Yushun Zhang, Rohil Tripathi,
- **International Collaborators:**
 Prof. Michel Cosnard of INRIA, France
 Dr. Zhiwei Xu of Chinese Academy of Sciences
 Dr. Rajkumar Buyya of Melbourne Univ., Australia
Global GridSec Testing Environment
International Collaborators in USA, France, China, and Australia

The GridSec over Internet

CAS/Vega Beijing, China
INRIA, Nice, France
Melbourne University, Australia
USC Gateway, Los Angeles

USC/ISD Supercluster
Trojan Cluster in IGC Lab.
Security Policy Manager
Security Database
USC NetShield Defense System and Testing Facilities
Intrusion Response Strategies for Defending against DDoS Attacks
Conclusions:

- **GridSec for protecting distributed resources**
 - Security-assured resource allocation (SARA)
 - Local resources fortified with NetShield library
 - Remote processing through GridSec VPN tunneling

- **Automated intrusion detection and response**
 - Generating anomaly detection rules to build IDS
 - Adaptive intrusion response through risk assessment
 - Priority defense against DDoS and flood attacks

- **Continued research tasks and future directions:**
 - Testing SARA and NetShield on GridSec testbed
 - Optimize the GridSec VPN architecture
 - Explore wireless Grid computing technology
 - Integrating pervasive, cluster, and Grid computing
Recent Reports and Submitted Papers:

