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Abstract

Pattern matching for network security and intrusion detection demands exception-
ally high performance. This paper describes a novel systolic array-based string match-
ing architecture using a buffered, two-comparator variation of the Knuth-Morris-Pratt
(KMP) algorithm. The architecture compares favorably with the state-of-the-art
hardwired designs while providing on-the-fly reconfiguration, efficient hardware uti-
lization, and high clock rates. KMP is a well-known, computationally-efficient string
matching technique that uses a single comparator and a precomputed transition ta-
ble. Through the use of the transition table, the number of redundant comparisons
performed is reduced. Through various algorithmic changes, we enable KMP to be
used in hardware, providing the computational efficiency of the serial algorithm and
the high throughput of a parallel hardware architecture. The efficiency of the sys-
tem allows for a faster and denser implementation than any other RAM-based exact
match system. We add a second comparator and an input buffer, then prove that the
modified algorithm can function efficiently implemented as an element of a systolic
array. The system can accept at least one character in each cycle, while guaranteeing
that the stream will never stall. In this paper, we prove the bound on the buffer
size and running time of the systolic array, discuss the architectural considerations
involved in the FPGA implementation, and provide performance comparisons against
other approaches.

1Supported by the United States National Science Foundation/ITR under award No. 0311823 and No.
ACI-0325409 and in part by an equipment grant from the HP and Xilinx Corporations. A preliminary
version of this paper appears in the proceedings of FPGA ’04.
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1 Introduction

Methods commonly used to protect against security breaches include firewalls with filtering

mechanisms to screen out obviously dangerous packets, and intrusion detection systems

which use much more sophisticated rules and pattern matching to sense potential malicious

packets.

A firewall’s function is to filter at the header level; if a connection is attempted to a

disallowed port, such as FTP, the connection is refused. This catches many obvious attacks,

but in order to detect more subtle attacks, an Intrusion Detection System (IDS) is utilized.

The IDS differs from a firewall in that it goes beyond the header, actually searching the

packet contents for various patterns that imply an attack is taking place, or that some

disallowed content is being transferred across the network. Current IDS pattern databases

reach into the thousands of patterns, providing for a difficult computational task. The

computational resources required are in the form of the parallel string matching against

thousands of patterns.

Using highly-parallel, configurable string matching units, our technique provides the

opportunity for dramatic improvements in performance and capability of these systems.

Our architecture offers increased computational efficiency over brute-force systolic arrays,

in which the input stream is shifted past a comparator equal in size to the pattern. The

brute force approach requires O(nk) comparisons, where k is the pattern size and n is

the input stream size. Our approach requires O(n + k) comparisons. This computational

efficiency translates into a smaller and faster implemention than a comparable on-the-fly

reconfigurable system.

Because the IDS must inspect at the line rate of its data connection, IDS pattern

matching demands exceptionally high performance. This performance is dependent on

the ability to match against a large set of patterns, and thus the ability to automatically

optimize and synthesize large designs is vital to a functional network security solution.
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Much work has been done in the field of string matching for network security [6, 12, 13, 16,

21]. However, the study of the automatic design of efficient, flexible, and powerful system

architectures is still in its infancy.

A complete Intrusion Detection Systems (IDS) based on the Snort rules [20] requires a

system optimized for thousands of rules, many of which require string matching against the

entire data segment of a packet. High levels of performance are necessary to provide real-

time string matching at trunk line speeds. Snort, the open-source IDS [20] has thousands of

content-based rules. Each of these rules require that a packet be searched in its entirety for

the occurrence of some “fingerprint” string. Using näıve methods, this is unworkable. Even

with the most sophisticated algorithms, sequential microprocessor-based implementations

cannot provide the level of service available in a customized hardware device. In [5], a Dual

1GHz Pentium III system, using 845 patterns, runs at only 50 Mbps. For small network

with limited traffic and a maximum wire speed of 100 Mbps, the software approach might be

acceptable. However, for larger networks and higher bandwidth connections, the software-

based approach will be forced to not scan some packets and potentially let an attack pass

undetected. A hardware-based approach is more capable of providing support for very high

bandwidth connections that are increasingly common.

Parallel hardware architectures offer large advantages in time performance compared

to software designs, due to easily extracted parallelism in the Intrusion Detection string

matching problem. A general ASIC design would be fast but not suitable due to the

dynamic nature of the ruleset – as new vulnerabilities and attacks are identified, new rules

must be added to the database and the device configuration must be regenerated. However,

a Field-Programmable Gate Array (FPGA) allows for exceptional performance due to the

parallel hardware nature of execution as well as the ability to customize the device for

a particular set of patterns. While each of our units can be reconfigured at runtime to

handle changing patterns, in practice the patterns would be grouped according to size such

that the unit sizes can be minimized. An FPGA can provide near-ASIC performance and
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parallelism, along with the ability to modify the hardware to a particular set of patterns.

FPGA solutions have recently become a popular strategy for implementing all manner of

applications. The development of standard models [23] has allowed their use in deployable

systems to expand into previously unexpected areas. Reconfigurable logic has become a

very popular approach for network applications, from cryptography [24] to flow monitoring

[17]. However, byte oriented operations such as string matching is one of the great strengths

of FPGA fabrics. In the earliest work in regular expression matching [18, 19], a method was

presented for matching regular expressions using a Non-deterministic Finite Automaton,

implemented on a FPGA.

Our implementation of the modified KMP algorithm allows string matching and on-

the-fly reconfiguration within the confines of a systolic array, increasing time and area

performance compared to a global reconfiguration strategy. The power of the systolic array

lies in its ability to reduce total device interconnect, and to provide the flexibility of a

memory-based pattern matcher within the architecture. By allowing only short connections

within a small, repeated unit, a design will achieve a higher operating frequency as well as

lower area consumption.

Any string matching implementation where the number of byte-level comparators is

less than the size of the pattern in bytes will require more than one comparison per byte

whenever a partially matched pattern fails. Without appropriate precautions in the design

of the algorithm and hardware, this can cause stalling that is unacceptable in a systolic

array. We first prove that it is possible to create string matching unit that will not stall.

We then present a proof of the minimum buffer size required. This allows us to implement

in FPGA a stall-less RAM-based string matcher with smallest possible buffer.

We begin this paper by reviewing the related work in the string matching field, followed

by an introduction to the Knuth-Morris-Pratt (KMP) algorithm. We then present our

modifications to the algorithm, as well as some operational examples. We show that the

modified algorithm can always accept at least one character per cycle, and prove the the
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minimum size of the buffer. Finally, we present the results of our algorithm implementation

and a scheme for on-the-fly reconfiguration of the array.

2 Related Work

While the network intrusion detection problem is well defined, the performance measures

are not. There are many approaches to the intrusion detection problem, and each has its

own strengths and weaknesses. We assume in this paper that the two most important

measures are throughput and area efficiency. Throughput, because the filtering needs

to keep pace with the line rate. Area efficiency is important because there are a few

thousand patterns that need to be matched. We propose that reconfigurability is the third

vital metric: the pattern database does change from time to time, and the downtime and

processing time for reconfiguration should be low. Hardwired approaches [1, 2, 3, 13, 22]

require place and route of the entire device, and then a short bitstream reconfiguration time.

An approach offering online reconfiguration, with little or no delay to the data stream, is

ideal, and offered by our approach, first developed in [4], and a hash-based approach in

[16].

Snort [20] is a current popular option for implementing intrusion detection in software.

It is an open-source, free tool that promiscuously taps the network and observes all packets.

After TCP stream reassembly, the packets are sorted according to various characteristics

and, in the worst case, are string-matched using the Boyer-Moore algorithm against rule

patterns. However, the rules are searched sequentially on a general-purpose microprocessor.

This means that the IDS is easily overwhelmed by consistently high rates of packets. The

only option given by the developers to improve performance is to remove rules from the

database or allow certain classes of packets to pass through without checking. A hacker

tool can take advantage of this weakness of Snort and attack the IDS itself by sending

worst-case packets to the network, causing the IDS to work as slowly as possible. The
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eventual uninspected packets that result provide an opportunity for the hacker. Clearly,

this is not an effective solution for maintaining a robust IDS.

In [12], a CAM-powered software/hardware IDS is explored. A Content Addressable

Memory (CAM) is used to match against possible attacks contained in a packet. Instead of

matching one character per cycle, the tool uses CAM hardware to match the entire pattern

at once as the data is shifted past the CAM. If a match is detected, the CAM reports

the result to the next stage, and further processing is done to derive a more precise rule

match. If a packet is found to match a rule, it is dropped or reported to the software IDS

for further processing. This requires O(mx) CAM memory cells and a great deal of routing

for each m-character layer of x rules. Unfortunately, though, because matching is done in

parallel across all rules and across all characters in one cycle, this sort of implementation

requires a great deal of logic. While this does provide O(n + m) worst-case rule matching

time, it does so at the cost of a large amount of hardware.

In [9] a novel hashing mechanism utilizing Bloom filter is discussed. Their implemen-

tation of a hashing-table lookup using a moderate amount of logic and external or internal

memory is an effective method to search thousands of strings for matches in a single pass.

Rules can be added by changing only some data in the memory. Rules can be removed by

maintaining some information in a software-based host. Neither requires reprogramming

the FPGA. The filter is powerful but somewhat hindered by a tradeoff between the false

positive rate and the number of rules contained in given memory size.

In [1, 2, 3, 5, 22], hardwired designs are developed that provide high area efficiency and

high time performance by using replicated hardwired comparators in a pipeline structure.

The hardwiring provides high area efficiency, but are difficult to reconfigure. Hardwiring

also allows a unit to accept more than one byte per cycle, through replication. A bandwidth

of 32 bits per cycle can be achieved with four hardwired comparators, each with the same

pattern offset successively by 8 bits, allowing the running time to be reduced by 4x for an

equivalent increase in hardware. These designs have adopted some strategies for reducing
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redundancy through pre-design optimization. The work in [6] was expanded in [5] to reduce

the area by finding identical alignments between otherwise unattached patterns. Their

preprocessing takes advantage of the shared alignments created when pattern instances are

shifted by 1, 2, and 3 bytes to allow for the 32-bit per cycle architecture.

3 Our Approach

Our novel approach to runtime adaptability uses a pipelined, two-comparator, buffered im-

plementation of the Knuth-Morris-Pratt algorithm (KMP)[14] to implement high-performance

pattern matching, while yielding a unit design that is highly area efficient. Our architecture

enables high-throughput, easily configurable intrusion detection for a variety of hardware

platforms (FPGA or ASIC). Unlike other state-of-the-art architectures, our approach does

not use hard-wired circuitry to implement pattern matching on an FPGA or ASIC, but

uses re-programmable memories storing patterns and pre-compiled jump tables to provide

exceptional flexibility.

By minimizing the number of comparators required to match a new input character each

cycle, we use fewer hardware resources than other approaches. After finding the maximum

buffer size requirements through careful analysis of the algorithm, we can produce a pattern

matching unit that uses few FPGA resources, allowing more units to be integrated onto

a single chip. By allowing only one-way communication between neighboring units, the

architecture is suited, by design, for use in a linear array and in grids of units.

A significant contribution of this paper is a demonstration of the maximum size buffer

required to implement a string matcher capable of accepting a character from the input

in each cycle without resorting to k parallel comparators, where k is the pattern size, or

an n element buffer, where n is the input stream size. The architecture that enables this

is a buffered string matching system implementing a KMP-like pre-computation algorithm

utilizing two comparators. This allows a matching unit to accept one character each cycle

7



into a buffer of size logφ k, where φ = 1+
√

5

2
.

By buffering the input and guaranteeing that one character can always be accepted into

the buffer from the stream, our work allows a systolic array of pattern matching units to

be created. The unit-level buffering is a key idea, because without buffering whenever an

individual unit stalls the input to recover from a failing comparison, the entire system must

stall as well. This is unacceptable, as it would reduce the system throughput significantly

as each individual unit contributed its own stalls to the system. The systolic array reduces

the input fanout and the overall interconnect distance by allowing units to be regularly

arranged on an FPGA without long-wire interconnects. Systolic designs have the benefit

of having no global connections, except for the clock signal. The details of our architecture

will be covered in Section 4 and we will show in a detailed proof in Section 6 that the buffer

will never drop input characters, regardless of the input or pattern.

3.1 Overview of KMP

KMP, developed by Knuth, Morris, and Pratt [14] utilizes a pre-computed table to prevent

redundant comparisons, reducing the worst-case running time from O(kn) to O(n + k).

The pre-computed table, or π-table2, tells the automata which pattern character to match

against next. The function f [q] gives the length of the largest number of characters in the

prefix of the pattern P that match the suffix ending at q − 1. The π[q] function gives a

more refined version of f [q] in that when P [q] = P [f [q]], the optimization π[q] = π[f [q]]

can be made to reduce redundant jumps.

f [q] = max{ j : j < q and

P [1 . . . j − 1] = P [q − j + 1 . . . q − 1]} + 1 (1)

2We use the π-table as equivalent to the usage of the next function in [14]; other references, such as
[8], compares against the (π + 1)th character whereas the original KMP compares against the πth pattern
character
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π[q] =





f [q], if pattern[j] 6= pattern[f [q]]

π[f [q]], if pattern[j] = pattern[f [q]]
(2)

That is, the π-table tells how much of the beginning of the pattern has already been

matched at any position in the pattern. Of course, this only affects the system when the

pattern has repeated strings; a pattern such as “abcdefg” would have no useful information

in the π-table, while “abaab” would have useful information because the beginning of the

pattern shows up later in the pattern. After the π[q] definition is applied, there is some

post-processing on the π-table, discussed later in this section.

The π-table below is for the worst-case pattern, a Fibonacci string [14]. π[1] = 0

(this is true for all patterns), meaning there is no possible match and the input pointer

should be advanced. π[4] = 2, meaning the next character comparison is against P [2]

= ‘b’. If this fails, the next comparison is against ‘a’. The second comparison of ‘a’ is

unavoidable because KMP is historyless, meaning that the system cannot remember what

it has compared earlier. An important point is that hard-coded Finite Automata-based

implementations can work more efficiently than a memory-based approach because the

FA can compare all of the possible transitions in parallel, while the RAM-based approach

must sequentially compare the incoming character against (potentially) several pattern

characters.

q 1 2 3 4 5 6 7 8 9

P[q] a b a a b a b a a

f [q] 1 2 1 2 2 3 4 3 2

π[q] 0 1 0 2 1 0 4 0 2

Our approach to intrusion detection uses a modified version of the KMP algorithm and

matching architecture (Figure 1) optimized for running on a systolic array. The Knuth-

Morris-Pratt algorithm (KMP)[14] is a sophisticated approach to string matching, providing

O(n + k) in the worst case. The exact worst case running time is 2n − k.
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KMP achieves these speedups by creating a table of allowable/possible matches, pre-

venting redundant comparisons. The main drawback of KMP is the slightly more compli-

cated control circuitry and lack of parallelism. Data cannot be shifted one position at a

time as in the näıve or wide parallel shift-and-compare approaches.

There are string matching algorithms that have better average-case running times than

KMP, but there is no single comparator algorithm with better worst-case characteristics.

Because the systolic array depends on consistent, non-fluctuating consumption of input

characters, the KMP algorithm is the ideal solution for our needs. This is vital to our

architecture, but it is important to network security in general because an attacker might

attempt to cause the IDS to drop packets by flooding it with specially designed packets. If a

IDS is overwhelmed by traffic, most configurations will allow some packets through without

screening, or subject them only to a cursory examination. This provides an opportunity

for an attacker to subvert the system. This type of attack is shown to be useless against

our design, due to the guarantee of performance in Section 6. Our contribution to the

field of KMP research is to prove a worst-case buffer size requirement such that a string

matching unit can accept an input character each cycle and end in (n + logφ k) cycles,

where φ = 1+
√

5

2
.

4 Architecture

The KMP algorithm uses a single comparator and can move forward at most one character

in the input string per cycle. However, in some situations, the input will be stalled while the

comparator makes additional comparisons against the same character. We extend KMP

by using two comparators, then prove in Section 6 that with a very small buffer we are

guaranteed that a character can be accepted from the input string during every cycle.

The general architecture is shown in Figure 1. Here we have two comparators feeding a

multiplexer that determines the new index values for the pattern and input memories. The
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Figure 1: General architecture of two-comparator design

input buffer is preloaded with the first k/2 characters. This allows the gap between the

characters read from the buffer and the characters entering the buffer to vary as matches

occur.

If first character match is not successful, the result of the second comparison is discarded.

However, when the first comparison does match, the result of the second comparison is

relevant. The two comparators allow the system to use input characters faster than they

enter into the buffer. This is important because when the comparison fails, the buffer stalls

on the current character until all possible alternate alignments of the pattern are compared

against. During this time, data continues to enter into the buffer, as the input stream

cannot be stalled.

Figure 2 illustrates the interaction between the incoming stream and the matching

unit. Because the data arrives in the buffer at a regular rate, there is a limit to the

number of characters that can be taken out of it. If the read pointer exceeds the write

pointer, an underflow condition occurs. This is illustrated by the darkened area above the

upper diagonal. The more difficult problem is overflow, captured by the darkened area
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Figure 2: Separation of read and write pointers in the input buffer. As time progresses to
the right, the number of consumed characters moves upward. The rate at which is moved
upward is governed by the state of the matching system. The system prevents the FIFO
from running out of new characters (underflow, as delimited by the top diagonal) and our
proofs guarantee that overflow will not occur (overflow, delimited by the bottom diagonal).

below the lower diagonal. In the overflow situation, the read pointer falls behind the write

pointer and the buffer runs out of space. In an IDS system, overflow would allow attacks

to pass undetected. In the figure, we see the input (read) pointer and the incoming data

(write) pointer as they vary during a pattern matching operation. The buffer initially

loads, producing the initial separation between the upper and lower lines. When there

are no successful matches, the input pointer proceeds diagonally upward. When the input

matches the pattern, the write index and the read indexes get closer together (in Figure

2, this is represented by any vertical movement), until a failing comparison occurs. This

causes the input pointer to stall, represented by a horizontal line in the graph. If, by

some combination of inputs the read and write pointers near, implying a nearly empty

character buffer, the unit will only utilize one of the comparators, slowing the processing

of the buffered packet to one character per cycle. This matches the speed of the stream

input to the buffer. By design, there is no situation where the read and write buffers can
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actually wrap around the buffer and collide, falling into either of the gray (overflow and

underflow) areas. Buffer overruns or underruns would cause input characters to be lost and

is undesirable. We prove that our design prevents this from happening in the next section.

Beyond the basic extensions to the KMP algorithm and our buffered systolic array

design, we also have designed a C-slowed version of the individual units. After careful

timing analysis of the design, it became clear that the large contributions to the period

can be split into two independent sections; the memory access and comparisons, and the

multiplexing of incremented pointers. After the initial memory read, the memory essentially

stands idle for the remainder of the cycle, and the combinational logic is idle until the

completion of the memory read. Given this situation, pipelining is a general technique that

is an obvious choice for increasing the speed of the system, but at first glance it seems

unworkable. Pipelining generally does not make sense for single-character-oriented string

matching architectures because they need to update the pointers each cycle based on results

from the current cycle.

The solution is a C-slowing technique [15]. Similar to a fine grain multi-threaded

architecture, the two pattern matching units essentially stay out of phase with each other.

The two units share the same hardware except for the memory segment storing the two

different patterns. This is an exciting approach because the combinational logic and input

buffers occupy more than 75% of the utilized area. Adding a few more state registers and

doubling the pattern memory produces only a small increase in the total resources required,

from 50 slices to 57 slices for a 16 character pattern and 65 slices for a 32 character pattern.

Because of the simplicity of the pipeline, the two units can flip back and forth between the

memory and combinational pipeline stages using only the pipeline registers, requiring no

extra control logic. While this strategy increases the latency for a single pattern, each unit

provides matching for two patterns with only a small increase in area. Any increase in

clock frequency due to the pipelining translates directly to increased total performance.

By pipelining the units, we increased the place-and-route clock frequency from 221 MHz
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Figure 3: Pipelined architecture of two-comparator design

to 285 MHz.

5 Operational Examples

In this section, we will explore a sequence of cases, working up to the proof of the general

behavior in the next section. The cases are illustrated in Figure 4. In the figure, f signifies

a failing match attempt, m is a successful match, and d is a ‘don’t care’ character which

does not figure in the current comparison cases. In each section of the figure, the hat (̂)

shows which two characters are being compared in parallel in each cycle. In the context

of a real example, Figure 4.c illustrates a situation in which the input matches a pattern

up to the third character. For instance, the pattern abcdef matched against “abrst” will

find the failing comparison on the second cycle, as ab are both compared in the first cycle.

Thus, the number of “matching cycles” is two. Because the matching failed on the third

character, the number of “characters consumed” is three. The number of “failing cycles”

is determined by the behavior of the algorithm. Within the first three characters in any

pattern, the number of alternate alignments is less than or equal to one. For instance, a

pattern “abc” has only one required alternate comparison, the first character. After failing

the comparison for ‘c’, the first character ‘a’ compared and then a new input character is
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Matching Failing Characters

Failure Position Cycles Cycles Consumed

a. First Character ̂f − d − d − d 1 0 1

b. Second Character m̂ − f − d − d 1 1 2

c. Third Character ̂m − m − ̂f − d − d − d 2 1 3

d. Fourth Character ̂m − m − m̂ − f − d − d 2 2 4

Figure 4: Character failures; ‘m’ is a match, ‘f’ is a failure, ‘d’ is a “don’t care”. By
comparing two characters in each cycle, the system can ensure that the number of characters
consumed is equal to or larger than the sum of number of clock cycles spent successfully
matching the input plus the cycles spent stalling while the matching failed.

processed. Thus, the number of cycles before a new character is processed (the number of

“failing cycles”) is one.

In Figure 4.a, the first character comparison fails. Regardless of the other characters in

the string, a failing first character always advances the input string pointer. Also, it causes

the same pattern character to be compared in the next cycle. The result is that we advance

the input index by one character in one cycle. This fulfills our requirement for ending up

no deeper in the pattern after any sequence of operations. In the following text, q∗ is the

index of the first character in the stream to be compared, and q is the index of the last

character to be compared.

The second case, shown in Figure 4.b, is a bit more complicated. Here, we compare the

first (P (1)) and second (P (2)) characters of the pattern with the first and second characters

of the input, i(q∗) and i(q∗ +1) in the first cycle, where j = q∗. The first character matches

(i(q∗) = P (1)), and the second character fails (i(q∗ + 1) 6= P (2)). Because only P (1)

matched, we advance the input by one byte (j = j + 1), but start the pattern from P (1)

again.

The next case is when both of the first two characters match (q∗, q∗ + 1)and we fail on

the third character P (3) as in Figure 4.c. We gain a cycle in the comparisons i(q∗) == P (1)

and i(q∗ + 1) == P (2), as we advance the input by two bytes in one cycle. When P (3)

fails in the second cycle, the only legal shift for q > 2 (as shown in Lemma 2 in Section 6)
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is of at least two characters: π[3] ≤ 1. As we are looking for the worst case path to q∗ =

0, we take the path where each comparison fails. Given a failing comparison at (q + 2) =

3, the next comparison is at π[3] = 1. If P [π[3]] = P (1) 6= i[q + 2], then we advance to the

next input character. Starting at q = 0 and advancing to q = 2, then failing back to q∗ = 0

requires a total of three cycles for three advances of the input pointer.

The fourth and final case we will investigate before proving that all cases meet the non-

decreasing buffer gap condition is a failure in the fourth position, P (4), as shown in Figure

4.d. This is very similar to the third, except during the second cycle the input advances by

one, and because of Lemma 2, π[4] ≤ 2, thus allowing the failure sequence π[4] = 2, and

π[2] = 1, and π[1] = 0. In comparison with the previous case, there is an additional jump,

thus requiring a total of four cycles, but the input is advanced as well.

6 Buffer Size Requirement

The general KMP architecture is difficult to utilize in a pipelined grid architecture of match-

ing elements because the algorithm can stall and suspend the processing of new characters

in unpredictable ways. Buffering the entire input sequence is one solution, but unworkable

as input sizes become large. Theorem 2 shows that the maximum buffer size required for

our architecture is only logφ k, where k is the pattern size.

Assumptions: We receive a single byte of input data each cycle. Total input length is n

bytes. Pattern length is m bytes. The pattern-matching element contains a RAM buffer

which can provide simultaneous reads from two different addresses and write to a third

address in one cycle. Note that the discussion of the proof refers to Figure 1; the pipelined

architecture in Figure 3 simply stretches a single state update across two cycles but com-

plicates the counting in the proof.
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Definitions:

to consume a character : to advance the pointer of the input buffer, ending the comparisons

against the current input character

cycles: a traversal between q∗ and q and then back to q∗ or earlier, consuming q − q∗ + 1

characters from the buffer. Not to be confused with clock cycles

sub-cycles: failing comparisons that lead to successful comparisons at positions larger than

1; that is, a cycle that ends because a prefix of the pattern matches the current suffix of

the input

cycles in: the number of clock cycles until a failing comparison occurs, including the clock

cycle that contains the first failing comparison

cycles out : the number of clock cycles after a failing comparison until the next increment

of the input pointer, not including the first failing comparison or the cycle after the pointer

is advanced. This number is equal to the π-transitions that require comparisons

architecture: the architecture in question is the string matching unit in Figure 1

character position: the position of a character in a string, the leftmost character being

character 0 and the rightmost character being n − 1

In Lemma 1, we show that the worst case for the algorithm are failures that cause

full-cycle traversals of the π-table, that is, where the pattern pointer starts and ends at the

first pattern character.

Lemma 1

If the algorithm correctness is maintained in full-cycle failures, the algorithm is correct

in sub-cycle failure situations.

Proof: Failures that cause sub-cycles, that is, failing comparisons that lead to successful

comparisons at positions larger than 1, require fewer clock cycles than full-cycle traversals.

The relation q − π[q] ≥ 2 for q > 3 holds except for the case detailed in Lemma 2. Because
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each π-transition skips at least one character for q > 3, and in general makes much larger

skips due to the logarithmic increase in the number of steps as a function of position, the

situation is always better than at positions deeper in the pattern.

Because full-cycle traversals are the worst-case situation, if the condition is satisfied for

all q when q∗ = 1, we can be satisfied the system will work for intermediate (sub-cycle) cases.

Lemma 2 proves that a pattern with the first (n− 1) characters identical followed by a

different character is the only pattern that can cause a transition that moves one element

backwards. Because this type of pattern can cause the architecture to fail, we seek to

understand it fully and then eliminate it.

Lemma 2

Transitions of the form π[q] = q − 1 for q < n can exist for a pattern, P [1,2, . . . , n-1,

n, . . . ], where P [q] = α for q = 1 . . .n and α is some pattern character.

Proof: The π-table is defined as the maximum j less than q such that P [1 . . . j − 1] =

P [q − j + 1 . . . q − 1]

In the case π[q] = q − 1, j = n - 1. Substituting for j,

P [1 . . . (n − 2)] = P [2 . . . (n − 1)].

Lemma 2 proves that all characters P [1] through P [n− 1] must be identical to produce

single-character π transitions. Moreover, n must be at least 2. This is the only case where

sequences of single-character π-jumps (more than one single-character jump in a row) may

occur. Fortunately, the original KMP algorithm [14] prevents sequences of repeated failing

comparisons, and thus, this case is impossible.

While characters P [1]...P [n − 1] must be identical, nothing is guaranteed about P [n],

which may be a different character. This causes an interesting situation, as π[q] = q − 1

can exist for only the nth character. For α1 6= α2, n = 2, the situation is identical to
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Case b in Section 5. For n > 2, there must have been at least one pair of characters

successfully matched in a single cycle. This gives the system the space to make a single-

byte π-jump. Due to the original KMP algorithm, only a pattern having identical leading

(n − 1) characters, followed by a different nth character, can cause π[n] = n − 1, and thus

there will exist only one single-character π-jump in any cycle. This is acceptable and does

not lead to buffer overruns.

In the proof of Theorem 1, we show that the architecture accepts, on average over

certain controlled time intervals, at least one character per cycle.

The buffer enqueues characters to use when the input pointer stalls. The input pointer

stalls when a character comparison fails and some number of additional comparisons have

to be made against the same input character. This proof is important because we need a

guarantee that the buffer in the architecture will never run out of space during an input

stall caused by non-matching input characters. While trivial with a n-sized input buffer,

we provide only a k/2 buffer for each matching unit.

Theorem 1 proves that, for any sequence of matching and failing the number of cycles

required to advance into the pattern to position q and then fail out to the starting character

or earlier (q∗) is less than the number of characters processed from the input buffer in the

same number of cycles. That is, the system advances farther when it matches than it gets

behind when it fails. In order for this to work, the system has to take advantage of the two

comparators provided and “get ahead,” or decrease the number of unprocessed characters

in the input buffer. When the failure occurs and the input pointer stalls for several cycles,

the number of unprocessed characters will increase. We call this the “non-decreasing buffer

gap,” meaning that the gap between the read and write pointers cannot have decreased at

the end of a cycle. If this condition is satisfied, no possible input sequence will cause the

system to not accept a character each cycle, or fail to fully process each character.

Theorem 1:
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Figure 5: Using q∗ = 1, we graph floor(q/2), floor(log(q)), and q, which correspond to Cc,
cmatching, and cfailing, respectively, in the formula Cc ≥ cmatching + cfailing

For any sequence of successful comparisons followed by a sequence of failing comparisons

where the initial character position at ti is greater than or equal to the final position at

tf and the number of characters removed from the buffer at tt = consumedt, the following

relation holds:

Cc =

∑tf
t=ti consumedt

tf − ti
≥ 1

Proof:

First, we algebraically create an equivalent relation. We multiply through by tf − ti,

then substitute the cycle equivalence tf − ti = cmatching + cfailing, where cmatching is the

number of system cycles in which both comparisons succeeded and cfailing is the number

of system cycles spent in which at least one comparison failed. This yields

tf∑

t=ti

(consumedt) ≥ cmatching + cfailing
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For convenience, we define
∑tf

t=0 (consumedt), the total number of characters consumed

from cycle ti to tf , as Cc.

We count the number of cycles starting when the system requests input character ij+q∗

(using the input index j for generality) and pattern character Pq∗, successfully matches

forward until input character ij+q and pattern character Pq. This requires cmatching =

b q−q∗+1

2
c clock cycles, counting from 1. If the pattern is not matched, a failure will occur.

The worst-case number of cycles until the next input character is requested from the buffer

occurs when the pattern pointer jumps all the way to the 1st pattern character. In this

case, the original KMP authors [14] proved that the worst case number of π-transitions,

and equivalently, the number of stalling cycles where no input characters are consumed,

is logφ q∗, where φ = 1+
√

5

2
. What we need, though, is the number of cycles until we fail

to a position less than or equal to the starting position q∗. This allows us to prove that

sub-cycles of matching and failing also conserves the buffer appropriately. This is simple

enough because the KMP algorithm is history-less, that is, only the current state matters,

allowing our accounting to start and end where we like, namely, q∗ and q.

The upper bound on the number of failing cycles cfailing between q∗ and q is the difference

between the upper bound of jumps for q and the lower bound for q∗.

For the worst-case pattern, the upper bound max jumps(q) on the number of cycles

from q is logφ(q).

Lemma 1 showed that the worst case for the cycles/characters consumed condition is

actually where q∗ = 1. This simplifies the analysis of the condition by allowing us to set

min jumps(q∗) = 0, yielding

cfailing = max jumps(q) − min jumps(q∗) = logφ(q) − 0

The final component required is the number of input characters processed. Because we

no longer require input character j at the end of our accounting, we can define Cc = q - q∗

+ 1. Putting the pieces together, we get:

q − q∗ + 1 ≥ b q−q∗+1

2
c + blogφ(q)c
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When q and q∗ are large, say, above 8, there is no question that the condition is satisfied

(see Figure 5), because the number of π-transitions decreases logarithmically with the

position in the pattern. Pattern positions less than 8 are more challenging in analysis. In

particular, for q < 8 because logφ q > q

2
.

Cc Cmatching Cfailing Successful?

1 1 0 T
2 1 1 T
3 2 �2 1 �F T
4 2 2 T
5 3 �3 1 �F T
6 3 3 T
7 4 �4 3 �F T
8 4 4 T
9 5 4 T
10 5 4 T

Figure 6: Correctness table based on worst-case bounds, which are found in Figure 5 to
overstate true worst-case numbers for some low values of q. In cases where this affects the
correctness of the analysis we fix the number of failing cycles and correspondingly adjust
the success flag.

We note that 3, 5, and 7 are not successful (as also indicated in Figure 5), based on

the worst-case formulation provided by Knuth, Morris, and Pratt in their original paper

[14]. Unfortunately, the worst case bound is not as tight as required. We have already

shown that the q=3 case maintains the buffer requirements. We can look at the Fibonacci

string, proved to be the worst-case possible pattern in the original paper, and see that the

worst-case bound overstates the actual worst-case in these important cases:

q 1 2 3 4 5 6 7 8 9

P [q] a b a a b a b a a

π[q] 0 1 0 2 1 0 4 0 2

Inspecting q = 3, 5, and 7, we can count the number of transitions before we can move

to the next input character. π(3) = 0, so the number of cycles for a failure is actually zero.

22



� � � �   ¡ � ¢ ¢ £ ¤

¥ ¦     £ ¤ � § £ ¨ © ¤ ª

« §@¥
¬ �   

� � � �   ¡ � ¢ ¢ £ ¤

¥ ¦     £ ¤ � § £ ¨ © ¤ ª

« §@¥
¬ �   

� � � �   ¡ � ¢ ¢ £ ¤

¥ ¦     £ ¤ �@§ £ ¨ © ¤ ª

« §@¥
¬ �   

® ¯ ° ± ² ³ ´ µ

® ¯ ³ ³ ² ¶ µ ´ µ

· ¯ ³ ° ¸ ¹ º ³

® ¯ ³ ³ ² ¶ µ ¹ º ³

® ¯ ° ± ² ³ ¹ º ³

Figure 7: Linear array of matching units. Each input buffer is of size k/2, each pattern
memory is of size k.

For q = 5, π(5) = 1, thus the number of transitions is 1. For q = 7, π(7) = 4, π(4) = 2,

π(2) = 1. Adding, there are a maximum of three transitions for q = 7. Substituting our

new, accurate values into the table, we see that each “worst-case” violation is valid. This

proves that our architecture requires equal or fewer cycles to compare the pattern against

the input than the number of input characters advanced during the same period, or, equiv-

alently, over any sequence of matches followed by a sequence of failures, the average number

of characters removed from the buffer is at least 1.

Theorem 2: Using two comparators, our KMP architecture requires a buffer of only k/2

characters, where k is the pattern length to support a one character per cycle throughput,

regardless of pattern or input sequence.

Proof: The two comparators allow two characters to be accepted from the buffer during

each cycle. It is thus possible to match an entire k length pattern in k/2 cycles. In Theorem

1, we proved that at least one character is removed from the buffer in every clock cycle,

on average. By Lemma 2, the maximum number of consecutive cycles in which the system

can remove zero characters from the buffer is equal to logφ k, where φ = 1+
√

5

2
.

The logφ k cycles in which characters are not removed from the buffer have already

been accounted for in the analysis of Theorem 1. That is, enough characters have been

removed from the buffer to allow for logφ k cycles to pass without removing data. However,

because characters continue to be added to the buffer regardless of the removal rate, the

buffer needs to be large enough to allow logφ k characters to enter without causing overflow.
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Figure 8: Various relevant pointers during a simulation of the two-comparator algorithm.
The input sequence matches the 16 character pattern for the first 15 characters of the
worst-case Fibonacci string pattern. The pointers into the buffer do not wrap at the buffer
boundaries for clarity.

Thus, the maximum required size of the buffer is logφ k.

The number of clock cycles required to completely match a pattern starting from the

first position, dk/2e, is greater than the precise buffer size required, logφ k, for k > 8.

The number of clock cycles for failing is always less than or equal to the number of cycles

for matching, for patterns larger than eight characters. We could limit the buffer to the

number of cycles for failing comparisons, but the larger buffer allows the architecture to

offer on-the-fly reconfiguration as well as the ability to do pipelining via C-slowing.

Next we present the results of a functional simulation of a contrived input against a

16-character pattern. The pattern used is the Fibonacci string, thereby exercising the

worst-case situation for the buffer. Various relevant pointers during a simulation of the

two-comparator algorithm are shown in Figure 8.

During the first six cycles, the logφ k size buffer is loaded, and then the algorithm starts.

In the simulation, the input sequence matches the first 15 of 16 characters in the pattern.

Because of the two comparators, the system only requires 8 cycles to match to the end of

the pattern. When the failure occurs in the 8th cycle, the read pointer stalls for several
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cycles (in Figure 8, the stall is manifested as a horizontal line), approaching the point at

which the read pointer is equal to the write pointer mod logφ k. If the read pointer was

to collide with the write pointer, data loss would occur due to overflow. However, before

the buffer overflows the pattern pointer reaches the first character, and the read pointer

resumes incrementing.

7 Results

In this section we present our results and define some performance measures to compare

against the competing architectures. We targeted the Virtex II Pro xc2vp4 device with -7

speed grade. We use the Xilinx ISE 5.2i and Mentor Graphics ModelSim 5.7 development

tools.

Implementation Total Work Input Bits Freq (MHz) Throughput

USC(no pipelining) 2n 8 221 8*freq=1.8 Gb/s
USC(pipelined) 2n 8 285 8*2 * freq/2 = 2.4Gb/s3

Los Alamos[12] kn 32 68 32*freq=2.2Gb/s
Wash U. - DFA[16] fn 8 80 8*freq=0.640Gb/s4,5

Wash U. - Bloom[9] kn 8 100 8*freq=0.8Gb/s4

UCLA RDL [5] kn 32 100 32*freq=3.2 Gb/s
U/Crete[21] kn 32 340 32*freq=10.8Gb/s

Table 1: Throughput and total work performed, e.g., the total number of byte comparisons
made.

In Table 1, we compare the total work performed for various implementations analyti-

cally, and its relation to the number of input bits and throughput. In Figure 9 we illustrate

the number of byte comparisons required for detecting the matching string at the end of

a 32 or 1600 byte input string. We find that hardwired, fast 32-bit implementations can

perform remarkably well in terms of throughput. However, they do not offer the reconfig-

2Two comparators use the same hardware due to the pipelining
3Each unit in this design advances by one byte in each cycle, but the system is composed of four units

working in parallel, increasing the total throughput to at least 2.4Gb. We consider only a single unit.
4Unit size determined by converting block RAM to equivalent distributed RAM structures for area

comparisons
5Variable f is the number of comparisons made for each step in the FSM
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Figure 9: Overall number of comparisons (work) for a variable length search string over a
32 or 1500 (TCP/IP MTU). The k length pattern is matched starting at position n − k.
Work for shift and compare designs is far greater, but more comparisons are made per
cycle.

urability that we can offer, nor can they compete area-wise. An important consideration in

our design strategy is in byte parallelism. Increasing input size by p times, while increasing

the throughput by p times, increases the number of comparators by p2 times. This work ef-

ficiency allows our architecture to maintain a larger number of matching units, even though

our architecture is not hard-wired. Moreover, our architecture, due to the systoic array of

elements and careful buffer design, can provide on-the-fly reconfiguration of a new ruleset

at the same time a new packet is loaded into the buffers. Because our performance metrics

measure both throughput and area efficiency, we consider exchanging a linear increase in

throughput for a quadratic increase in area to be not in our best interest. This leaves us

with state machine based implementations such as [16], and creative architectures based

on traditional string matching algorithms such as KMP.

Many previous papers on network string matching have provided fast throughput on

a few patterns but have not been able to scale well because of fanout delays and the

complexity of their matching units. This puts a severe limitation to their application

in real network security applications, where hundreds if not thousands of rules must be
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simultaneously matched at line rates. Other designs [3, 6, 21], with their small, simple

pipelined and hardwired design, have come closer to producing efficient designs as the they

can fit one hundred or so of the most common patterns on a device. Unfortunately, as the

number of pattern matching units increases the system speed drops dramatically, and, as

parallelism increases, the area requirements increase quadratically.

In order to scale the design, we have developed a Relationally Placed Macro (RPM)

which allows the performance of the unit to be reliable duplicated in volume on large

devices. It also provides predictable area, faster place and route, and can more easily meet

timing when scaled.

Without the RPM, performance degrades noticeably after more than 50 units or so are

placed on a device. This scaling issue is a problem that is less noticeable in the shared

decoder strategy we and others have pursued [1, 5, 7, 22]. One novel approach we have

considered is a hybrid architecture that utilizes the prefiltering architecture we advanced

in [1] and the KMP units from this paper. In the prefiltering architecture, the filter has

exceptionally small area per character requirements, but can filter a high data rate input

stream into a small subset of potential matches. It is a “prefilter” because the false-

positive rate is fairly high. A small bank of KMP units are configured on-the-fly as needed

by the prefilter. The KMP units serve as an exact-match backend. In this way, the exact-

match run-time reconfiguration abilities of the KMP architecture are tapped along with

the scalable performance characteristics of the prefiltering architecture.

8 Reconfiguration of Arrays of Units

Our design provides reconfiguration that proceeds at the same rate as the flow of the input

packet into the buffer. One troubling aspect of other designs in the field [6, 13, 16, 21]

is the amount of time required to change the patterns in the unit, usually requiring some

place-and-route effort and partial reconfiguration. While much work has been published
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on effective strategies for this [2, 10], the schemes are never as effective as a system with

architectural support for on-the-fly reconfiguration.

Recent viruses have infected hundreds of thousands of hosts in the first few minutes

of activity. Given the power of modern worms and other hacking attacks, waiting for a

complete place and route of a hard-wired design while a network is overrun is not ideal.

Thus, fast reconfiguration is useful in dynamic network environments. In other situations,

fast reconfiguration is necessary to support the entire rule set. For instance, in the Snort

ruleset [20], rules are sorted into categories based on port number and protocol. It is

challenging in current systems, including our design, to support all of the possible rules in

a single device. By allowing the system to be reconfigured as required for different types

of packets, the system can more effectively meet the needs of practical network security.

The architecture of our system is dependent on several small banks of memory in each

unit that hold the patterns and jump tables. These buffers give us the time required to

load new patterns.

There are two key architectural requirements for on-the-fly reconfiguration. One is that

there is enough space in the buffer to make room for the reconfiguration delay. The input

stream could be delayed during reconfiguration to allow for the new patterns be loaded.

However, since the pattern being changed is no longer relevant there is no reason the system

should not stop monitoring and hold the pattern pointer at zero during reconfiguration.

Assume, then, that the currently buffered characters will be lost. The second requirement is

the ability to actually utilize the buffers as a k/2 delay element without adding significant

hardware. The buffer pointer that addresses the current pair of input characters under

comparison does not consistently increment, and thus it is not suited to our needs. However,

the incoming character (write) pointer increments once per cycle. Thus, it can be used

without changing the original buffer design.

By providing a pattern input bus as well as a stream input bus, we fulfill the require-

ments for reconfiguration. To create a system, the units are daisy-chained together into a
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linear array, shown in Figure 7. In this way the pattern information can pass from unit to

unit without system-level control.

The first step in reconfiguration is to set the buffer pointer to the empty position. This

is done regardless of the current matching state – as the unit’s pattern is being modified,

the match information is no longer relevant. The buffer will fill with k/2 characters while

the pattern and jump table are filled (the buffer is filled exactly as in the initial buffer

loading during initial start-up). We have provided a wide data path such that the pattern

memory can be filled in k/2 cycles, in time for the buffer to be filled (one element per cycle

to the size limit of k/2 cycles) such that matching can begin.

Because the incoming packet is loaded into the unit’s buffer at the same rate as the

pattern, we are guaranteed that each pattern will be fully loaded in unit i when the new

input fully loads unit i’s buffer. Using this strategy, a p element row of k character units

can be entirely reconfigured in pk/2 cycles given a double-word pattern data path, with no

delay to the input stream.

9 Conclusion

This paper has presented a novel systolic-array string matching architecture using a buffered,

two-comparator variation on the Knuth-Morris-Pratt algorithm. The architecture competes

favorably with the state-of-the-art while providing on-the-fly reconfiguration, better scala-

bility due to the simplicity of the linear architecture, and more efficient hardware utilization.

For patterns of size 32 characters it competes with any current published results, even par-

allel hardwired comparator approaches, without requiring place-and-route between pattern

configurations. Our future work includes context-sensitive on-the-fly partial reconfiguration

of patterns and on-board π-table generation.
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