
Automatic Synthesis of Efficient Intrusion Detection

Systems on FPGAs

Zachary K. Baker and Viktor K. Prasanna

University of Southern California, Los Angeles, CA, USA
zbaker@halcyon.usc.edu, prasanna@ganges.usc.edu

Abstract. This paper presents a tool for automatic synthesis of highly efficient intrusion
detection systems using a high-level, graph-based partitioning methodology, and tree-based
lookahead architectures. Intrusion detection for network security is a compute-intensive ap-
plication demanding high system performance. This tool automates the creation of efficient
FPGA architectures using system-level optimizations, a relatively unexplored field in this
area. The pre-design tool allows for more efficient communication and extensive reuse of
hardware components for dramatic increases in area-time performance. We release the tool
for public use.

1 Introduction

Pattern matching for network security and intrusion detection demands exceptionally high per-
formance. This performance is dependent on the ability to match against a large set of patterns,
and thus the ability to automatically optimize and synthesize large designs is vital to a functional
network security solution. Much work has been done in the field of string matching for network
security [1–5]. However, the study of the automatic design of efficient, flexible, and powerful
system architectures is still in its infancy.

Methods commonly used to protect against security breaches include firewalls with filtering
mechanisms to screen out obviously dangerous packets, and intrusion detection systems which
use much more sophisticated rules and pattern matching to sense potential malicious packets.
These techniques require significant computational resources. However, using automated design
strategies for highly-parallel adaptive soft processors, there is potential for dramatic performance
improvements. FPGAs provide an attractive platform for hardware implementation of intrusion
detection because of the dynamic nature of the ruleset – as new vulnerabilities and attacks
are identified, new rules must be added to the database and the device configuration must be
regenerated.

Snort, the open-source IDS [6], and Hogwash [7] have thousands of content-based rules. A
system based on these rulesets requires a hardware design optimized for thousands of rules, many
of which require string matching against the entire data segment of a packet. To support heavy
network loads, high performance algorithms are required to prevent the IDS from becoming the
network bottleneck. One option is to move the matching away from the processor and on to an
FPGA, wherein a designer can take advantage of the reconfigurability of the device to produce
customized architectures for each set of rules.

Previous designs have had excellent single-pattern performance, but when integrated into
a system, their performance plunges due to poor resource usage and interconnect and routing
complexity. No longer can pattern matching units be judged on the characteristics of a single

matching unit. In a real environment where thousands of rules must coexist on a single FPGA,
the pervasive matching unit-level view of Intrusion Detection cannot persist.

1 Supported by the United States National Science Foundation/ITR under award No. ACI-0325409 and
in part by an equipment grant from the HP Corporation.

����� � ��� �
	
��� �������

� � ���� �
����� ���� ������� ��� � �� � � �

� � � ��
����� � � � � !� � � �� �

�"� !#������$�"�� � � � � !������
� � � ����&% !���'(� ���
)*� #���� � ��#+� ,�� �

������� ������ �-�����
�(� ��#��.������/�!�,�� �
0 1&� � � ��2-� !�!3� ��4

� ����� ��� �
�"����� ������� 5���� �

6&7*	
8

� � ����� ���(� ���� � ���
	���� ���3� � ,�#�� ,� ���

Fig. 1. Automated optimization and synthesis of partitioned system

By carefully and intelligently processing an entire ruleset (Figure 1), our tool can partition a
ruleset into multiple pipelines in order to optimize the area and time characteristics of the system.
By applying automated graph theory and trie techniques to the problem, the tool effectively
optimizes large ruleset, and then generates a fully synthesizeable architecture description in
VHDL ready for place and route and deployment in less than 10 seconds for a set of 351 patterns,
and less than 30 for 1000 patterns.

This automated hardware-synthesis backend technology dramatically increases the speed of
string matching for intrusion detection applications. Our automated tools provide dramatic im-
provements over the state-of-the-art. and provide results demonstrating that systems of several
hundred patterns up to one thousand patterns can operate at up to 250MHz, with an area
efficiency 2 times that of the nearest competing design.

2 Related Work in Automated IDS Generation

Snort [6] and Hogwash [7] are current popular options for implementing intrusion detection in
software. They are open-source, free tools that promiscuously tap the network and observe all
packets. After TCP stream reassembly, the packets are sorted according to various characteristics
and, if necessary, are string-matched against rule patterns. However, the rules are searched in
software on a general-purpose microprocessor. This means that the IDS is easily overwhelmed by
periods of high packet rates. The only option given by the developers to improve performance
is to remove rules from the database or allow certain classes of packets to pass through without
checking. Some hacker tools even take advantage of this weakness of Snort and attack the IDS
itself by sending worst-case packets to the network, causing the IDS to work as slowly as possible.
If the IDS allows packets to pass uninspected during overflow, an opportunity for the hacker is
created. Clearly, this is not an effective solution for maintaining a robust IDS.

Automated generation of optimized generic architectures has been explored [8–10], but domain-
specific tools have a distinct performance advantage in network security. Automated IDS designs
have been explored in [1], using automated generation of Non-deterministic Finite Automata. The
tool accepts rule strings and then creates pipelined distribution networks to individual state ma-
chines by converting template-generated Java to netlists using JHDL. This approach is powerful
but performance is reduced by the amount of routing required and the logic complexity required
to implement finite automata state machines. The generator can attempt to reduce logic bur-
den by combining common prefixes to form matching trees. This is part of the pre-processing
approach we take in this paper.

Another automated hardware approach, in [5], uses more sophisticated algorithmic techniques
to develop multi-gigabyte pattern matching tools with full TCP/IP network support. The system
demultiplexes a TCP/IP stream into several substreams and spreads the load over several parallel
matching units using Deterministic Finite Automata pattern matchers. In their architecture, a

web interface allows new patterns to be added, and then the new design is generated and a full
place-and-route and reconfiguration is executed, requiring 7-8 minutes. As their tools have been
commercialized in [11], they are not freely available to the community.

In [2, 3], a hardwired design is developed that provides high area efficiency and high time
performance by using replicated hardwired 32-bit comparators in a pipeline structure. The hard-
ware design is generated automatically based on the ruleset, but there is no optimization either
at the pattern level or at the system level. The main weakness of these works is the p2 increase
in hardware for a p increase in throughput. The matching technique proposed is to use four
32-bit hardwired comparators, each with the same pattern offset successively by 8 bits, allowing
the running time to be reduced by 4x for an equivalent increase in hardware. The authors use
about 100 rules, “the most common attacks,” and have implemented only these patterns in the
FPGA. We implement up to 1000 rules in our largest test for this paper, at little time perfor-
mance penalty. Their systems are generated from templates, but optimization (if any) is left to
the FPGA synthesis tools. The tool presented in this paper creates architectures customized for
a particular data set.

3 Our Approach

This research focuses on automatic optimization and generation of high-performance string-
matching of high volumes of data against large pattern databases. The tool generates two basic
architectures, a pre-decoded shift-and-compare architecture, and a variation using a tree-based
area optimization. In this architecture, a character enters the system and is “pre-decoded” into
its character equivalent. This simply means that the incoming character is presented to a large
array of AND gates with appropriately inverted inputs such that the gate output asserts for a
particular character. The outputs of the AND gates are routed through a shift-register structure
to provide time delays. The pattern matchers are implemented as another array of AND gates
and the appropriate decoded character is selected from each time-delayed shift-register stage. The
tree variation is implemented as a group of inputs that are pre-matched in a “prefix lookahead”
structure and then fed to the final matcher stage. The main challenge in the tree structure is
creating the trees; this is discussed in Section 5.

The notion of predecoding has been explored in [12] in the context of finite automata, the use
of large, pipeline brute-force comparators for high speed was initiated by [2] and furthered by [3].
The use of trees for building efficient regular expression state machines was initially developed
by [1]. We explored the partitioning of patterns in the pre-decoded domain in [13]. We utilize
these foundational works and build automatic optimization tools on top.

Previous research on high-performance string matching has been centered around the perfor-
mance of single matching units. High performance is achieved for these single units, but system
performance tends to dramatically decrease when the number of patterns in the ruleset is in-
creased. The area-time performance of many designs is restricted due to either high on-chip
bandwidth requirements to allow large matching units to receive data, or a large volume of con-
trol routing and high logic complexity. Both of these characteristics lead to poorly scaling system
designs.

With our domain specific analysis and generation tool, extensive automation carefully parti-
tions a rule databases into multiple independent pipelines. This allows a system to more effec-
tively utilize its hardware resources. The key to our performance gains is the idea that characters
shared across patterns do not need to be redundantly compared. Redundancy is an important
idea throughout string matching; the Knuth-Morris-Pratt algorithm, for instance, uses precom-
puted redundancy information to prevent needlessly repeating comparisons. We utilize a more
dramatic approach; by pushing all character-level comparisons to the beginning of the compara-

����� � � � � ���
	
�
� � � ��

����� � � � � ���
	
��� � � �

� � � � � �

����� � � � � ��� �"!$#
%$&('

����� � � � � ��� �"!$#
%$&*)

����� � � � � ��� �"!$#
%$&,+

����� � � � � ��� �"!$#
%$&(-

. �

����� � � � � �/�102!$#
%$&('

����� � � � � �/�102!$#
%$&*)

����� � � � � �/�102!$#
%$&,+

�3��� � � � � ���401!�#
%�& -

5 �$6$7���82����� �$9�� %$�

����� � � � � ����:
�"� � � 2�

����� � � � � ����:
�"� � � ��

����� � � � � ��� �"!$#
%$&,;

82����� ��9�� %���<
%�9��$=$%�� �

Fig. 2. General architecture of our pipelined comparators design. Characters are converted to single bits
in the first stage and then fed into the pipeline, where they become operands for the pattern comparators

tor pipelines (Figure 2), we reduce the character match operation to the inspection of a single
bit.Previous approaches to string matching have all been centered around a byte-level view of
characters. Recent work by our group and others [12, 13] has utilized pre-decoded, single-bit char-
acters re-encodings in lieu of piping 8-bit wide datapath to every pattern matching unit. High
performance designs have increased the base comparison size to 32 bits, providing high through-
put by processing four characters per cycle. However, increasing the number of bits processed at
a single comparator unit increases the delay of those gates. The pre-decoding approach moves
in the opposite direction, to single-bit, or unary, comparisons. We decode an incoming charac-
ter into a “one-hot” bit vector, in which a character maps to a single bit. This allows efficient
multi-byte comparisons, regular expressions, prefix trees, and even partial matches using simple
sum-of-products expressions.

Unfortunately, without some reduction in the character set, unary representations are almost
entirely useless due to the level of inefficiency caused by the huge number of bit lines required for
the 256 character ASCII set. In a set of long patterns utilizing every character in the character
space with low repetition, ASCII encoding would likely be the most efficient strategy.

However, if the character set can be reduced, the number of bit lines can be similarly reduced.
The most trivial example of reduced sets is DNA matching, where the only characters relevant
are A,T,C,G, represented as four one-hot bits. String matching for network security is a more
interesting application as thousands of real-world patterns need to be matched simultaneously
at high throughput rates.

Because intrusion detection requires a mix of case sensitive and insensitive alphabetic char-
acters, numbers, punctuation, and hexadecimal-specified bytes, there is an interesting level of
complexity. However, each string only contains a few dozen characters, and those characters
tend to repeat across strings. In the entire Hogwash database, there are only about 100 different
characters ever used. Some of those are case insensitive, or can be made case insensitive without
loss of generality, and we can convert hexadecimal-specified bytes into their character equivalents
(0-9, A-F). This reduces the number to roughly 75 characters. Using the min-cut heuristic, the
patterns are partitioned n-ways such that the number of repeated characters within a partition

is maximized, while the number of characters repeated between partitions is minimized. The
system is then generated, composed of n pipelines, each with a minimum of bit lines. The value
of n is determined from results; we have found n= 2-4 most effective for rulesets of less than
400 patterns. Conversely, for the 603 and 1000 pattern rulesets, the highest time performance
is achieved with eight partitions. However, as the area increases moderately as the number of
partitions increases, the area-time tradeoff must be considered.

The tools, on average, can partition a ruleset to roughly 30 bits, or about the same amount of
data routing as [2, 3]. The matching units are least 8x smaller (32 down to 4 bits for the design
in [2]), and we have removed the control logic of KMP-style design such as [14].

4 Automatic Tool for Architecture Synthesis

Our unary design utilizes a simple pipeline architecture for placing the appropriate bit lines in
time. Because of the small number of total bit lines required (generally around 30) adding delay
registers adds little area to the system design. Our new design takes the general straight-forward
matching technique used in [2, 3], but moves the character decoding to the first stage in the
pipeline (as in [12]), and reduces the overall size of the individual comparators by one-eighth, as
illustrated in Figure 2.

First, the tool partitions the patterns into several groups (Figure 4) such that the minimum
number of letters have to be piped through the circuit; that is, we give each group of patterns
a pipeline, and go through various heuristic methods to attempt to reduce the pipeline register
width.

The graph creation strategy is as follows. We start with a collection of patterns, represented as
nodes of a graph. Each pattern is composed of letters. Every node with a given letter is connected
by an edge to every other node with that letter. We formalize this operation as follows:

Sk = {a : a ∈ C | a appears in k} (1)

VR = {p : p ∈ T} (2)

ER = {(k, l) : k, l ∈ T, k 6= l and Sk ∩ Sl 6= ∅} (3)

Graph creation before partitioning; a vertex V is added to graph R for each pattern p in the
ruleset T and an edge E is added between any vertex-patterns that have a common character in
the character class C

This produces a densely connected graph, almost 40,000 edges in a graph containing 361
vertices. Our objective is to partition the big graph into two or more smaller groups such that
the number of edges between nodes within the group is maximized, and the number of edges
between nodes in different groups is minimized. Each pipeline supplies data for a single group,
as illustrated in the system-level schematic in Figure 2. By maximizing the edges internal to a
group and minimizing edges outside the group which must be duplicated, we reduce the width
of the pipeline registers and improve the usage of any given character within the pipeline. We
utilize the METIS graph partitioning library [15].

One clear problem is that of large rulesets (>500 patterns). In these situations it is essentially
impossible for a small number of partition to not each have the entire alphabet and common
punctuation set. This reduces the effectiveness of the partitioning; however, if we add a weighting
function the use of partitioning is advantageous into much larger rulesets. The weighting functions
is as follows:

W E =

min(|k|,|l|)∑

i=1

[(min(|k|, |l|) − i) if (k(i) == l(i)) else 0] (4)

The weight WE of the edge between k and l is equal to the number of characters k(i) and
l(i) in the pattern, with the first character comparison weighted as the length of the shortest
pattern. The added weight function causes patterns sharing character locality to be more likely
to be grouped together.

The addition of the weighting function in Equation 4 allows the partitioning algorithms to
more strongly put patterns with similar initial patterns of characters to be grouped together.
The weighting function is weak enough to not force highly incompatible patterns together, but
is strong enough to keep similar prefixes together. This becomes important in the tree-blocking
approach, described next.

5 Tree-Blocking

We have developed a tree-blocking strategy to find pattern prefixes that are shared among match-
ing units in a partition. By sharing the matching information across the patterns, the system can
reduce redundant comparisons. This strategy allows for increased area efficiency, as hardware
reuse is high. However, due to the increased routing complexity and high fanout of the blocks,
it can increase the clock period. This approach is similar to the trie strategy utilized in [1],
in which a collection of patterns is composed into a single regular expression. Their DFA im-
plementation could not achieve high frequencies, though, limiting its usefulness. Our approach,
utilizing a unary-encoded shift-and-compare architecture and allowing only prefix sharing and
limited fanout, provides much higher performance.

Figure 3 illustrates the tree-based architecture. Each pattern (of length greater than 8) is
composed of a first-level prefix and a second-level prefix. Each prefix is matched independently
of the remainder of the pattern. After a single-clock delay, the two prefixes and the remainder
of the pattern are combined together to produce the final matching information for the pattern.
This is effective in reducing the area of the design because large sections of the rulesets share
prefixes. The most common prefix is /scripts, where the first and second-level prefixes are used
together. The 4-character prefix was determined to fit easily into the Virtex-style 4-bit lookup
table, but it turns out that number is highly relevant to intrusion detection as well. Patterns
with directory names such as /cgi-bin and /cgi-win can share the same first-level prefix, and then
each have a few dozen patterns that share the -bin or -win second-level prefix.

In Table 1, we show the various numbers of first and second-level prefixes for the various
rulesets we utilized in our tests. Second-level prefixes are only counted as different within the
same first-level prefix. For this table, we created our rulesets using the first n rules in the Nikto
ruleset [7]. There is no intentional pre-processing before the tool flow. The table shows that, on
average, between 2 and 3x redundancy can be eliminated through the use of the tree architecture.
However, some of this efficiency is reduced due to the routing and higher fanout required because
of the shared prefix matching units.

Number of Prefixes

No. of Patterns First Level Second Level

204 83 126
361 204 297
602 270 421
1000 288 523

Table 1. Illustration of effectiveness of tree strategy for reducing redundant comparisons.

��� ��� � �	�
��������
��� �
� � �	����������

�����
� ����� �
�
��� ���� � !��#"$��%�� &�� �
� &

'�' (*),+ -/.'�'

Fig. 3. Illustration of Tree-based hardware reuse strategy. Results from two appropriately delayed prefix
blocks are delayed through registers and then combined with remaining suffix. The key to the efficiency
of this architecture is that the prefix matches are reused, as well as the character pipeline stages

021$3 3 4/5 6,7

0�1$3 3 4$5 698
5 :�:�3

; 1�<2=�4/5
<25 1$<2=
4/5

> <2?A@,B 4�C94

0�1�3 3 4$5 6�7

; 1$<9=�4/5

> <2?A@�B 42C94<95 1$<2=
4�5

0�193 3 4/5 628

5 :$:�3

Fig. 4. Partitioned graph; by reducing the cut between the partitions we decrease the number of pipeline
registers

6 Tool Performance

After partitioning, each pattern within a given partition is written out, and a VHDL file is
generated for each partition. A VHDL wrapper with Digital Clock Managers for supported Xilinx
chips is also generated given the partitioning parameters. The size of the VHDL files for the 361
ruleset total roughly 300kB in 9,000 lines, but synthesize to a minimum of 1200 slices. While the
automation tools handle the system-level optimizations, the FPGA synthesis tools handle the
low-level optimizations. During synthesis, the logic that is not required is pruned – if a character
is only utilized in the shallow end of a pattern, it will not be carried to the deep end of the
pipeline. If a character is only used by one pattern in the ruleset, and in a sense wastes resources
by inclusion in the pipeline, pruning can at least minimize the effect on the rest of the design.

The worst case graph size is (n−1)(n)/2 edges for n vertices. The size of the utilized-character
sets are limited in size, generally less than 50 and average between 10 and 20. For our analysis,
we can consider them constant, making the time complexity of the sort O(n2), with a space
complexity of O(n2).

The time complexity of general graph partitioning problem using the Kernighan-Lin algorithm
is O(n2 log n), with a space complexity equal to the size of the input graph. Through the use
of the four-character block we implement the tree structure in O(n) operations. Thus the time
complexity of the complete process is O(n2 log n) with a space complexity of O(n2).

In the 361 pattern, 8263 character system, the design automation system can generate the
character graph, partition, and create the final synthesizeable, optimized VHDL in less than 10

seconds on a desktop-class Pentium III 800MHz with 256 MB RAM. The 1000 pattern, 19584
character ruleset requires about 30 seconds. All of the code code except the partitioning tool is
written in Perl, a runtime language. While Perl provides powerful text processing capabilities
useful for processing the rulesets, it is not known as a high performance language. A production
version of this tool would not be written in a scripting language. Regardless of the implementation,
the automatic design tools occupy only a small fraction of the total hardware development time,
as the place and route of the design to FPGA takes much longer, roughly ten minutes to complete
for the 361 pattern, 8263 character design.

7 Performance Results for Tool-Generated Designs

This section will present results based on partitioning-only unary and tree architectures auto-
matically by our tool. The results are based on ruleset of 204,361, 602 and 1000 patterns, subsets
of the Nikto ruleset of the Hogwash database [7].

We utilized the tool to generate system code for various numbers of partitions. Table 2 contains
the system characteristics for partitioning-only unary designs, and Table 3 contains our results
for the tree-based architecture. As our designs are much more efficient than other shift-and-
compare architectures, the most important comparisons to make are between “1 Partition” (no
partitioning) and the multiple partition cases. Clearly, there is an optimal number of partitions
for each ruleset; this tends toward 2-3 below 400 patterns and toward 8 partitions for the 1000
pattern ruleset. The clock speed gained through partitioning can be as much as 20%, although this
is at the cost of increased area. The tree approach produces greater increases in clock frequency,
at a lower area cost. The 602 pattern ruleset shows the most dramatic improvements when using
the tree approach, reducing area by almost 50% in some cases; the general improvement is roughly
30%. Curiously, the unpartitioned experiments actually show an increase in area due to the tree
architecture, possible due to the increased fanout when large numbers of patterns are sharing the
same pipeline.

Number of Patterns in Ruleset

No. Partitions 204 361 602 1000

1 4.179 5.175 5.33 5.41
Clock 2 4.457 4.497 5.603 5.17
Period 3 3.863 4.798 4.556 5.6

4 3.986 4.244 5.063 5.22
8 4.174 5.193 4.602 4.93

1 800 1198 2466 4028
2 957 1394 3117 4693

Area 3 1043 1604 3607 5001
4 1107 1692 4264 5285
8 2007 1891 5673 6123

Total chars in ruleset: 4518 8263 12325 19584
Characters per slice (min): 5.64 6.89 4.99 4.86

Table 2. Partitioning-only Unary Architecture: Clock period (ns) and area (slices) for various numbers
of partitions and patterns sets

Table 4 contains comparisons of our system-level design versus individual comparator-level
designs from other researchers. We only compare against designs that are architecturally similar
to a shift-and-compare discrete matcher, that is, where each pattern at some point asserts an

individual signal after comparing against a sliding window of network data. We acknowledge that
it is impossible to make fair comparisons without reimplementing all other designs. We have de-
fined performance as throughput/area, rewarding small, fast designs. In this metric, architectures
produced by our tools are exceptional.

Number of Patterns in Ruleset

No. Partitions 204 361 602 1000

1 4.89 5.25 5.43 5.35
Clock 2 4.18 4.27 4.8 4.22
Period 3 3.99 4.15 4.32 5.08

4 4.1 4.1 4.54 4.69
8 4.3 4.43 4.628 4.9

1 773 1165 2726 4654
2 729 1212 2946 3170

Area 3 931 1410 2210 5010
4 1062 1345 2316 5460
8 1222 1587 2874 6172

Total chars in ruleset: 4518 8263 12325 19584
Characters per slice (min): 6.19 7.09 5.577 6.17

Table 3. Tree Architecture: Clock period (ns) and area (slices) for various numbers of partitions and
patterns sets

In Table 2 and 3, we see that the maximum system clock is between 200 and 250MHz for all
designs. The system area increases as the number of partitions increases, but the clock frequency
reaches a maximum at 3 and 4 partitions for sets under 400 rules and at 8 partitions for larger
rulesets. Our clock speed, for an entire system, is in line with the fastest single-comparator
designs of other research groups. On average, the tree architecture is smaller and faster than the
partitioning-only architecture. In all cases the partitioned architectures (both tree and no-tree)
are faster than the non-partitioned systems.

The smallest of designs in the published literature providing individual match signals is in
[12], in which a state machine implements a Non-deterministic Finite Automata in hardware.
That design occupies roughly 0.4 slice per character. Our tree design occupies roughly one slice
per 5.5-7.1 characters, making it significantly more effective. While this approach is somewhat
limited by only accepting 8 bits per cycle, the area efficiency allows smaller sets of patterns to
be replicated on the device. This can increase throughput by allowing for parallel streams of
individual 8-bit channels. For a single, high-throughput channel, the stream is duplicated, offset
appropriately, and fed through duplicated matchers, allowing multiple bytes to be accepted in
each cycle.

Design Throughput Unit Size Performance

USC Unary 2.07 Gb/s 7.3 283
USC (Tree) 2.00 Gb/s 6.6 303

Los Alamos[4] 2.2 Gb/s 243 9.1
UCLA[2] 2.88 Gb/s 160 18.0

U/Crete[3] 10.8 Gb/s 269 40.1

Table 4. Pattern size, average unit size for a 16 character pattern (in logic cells; one slice is two logic
cells), and performance (in Mb/s/cell). Throughput is assumed to be constant over variations in pattern
size

8 Conclusion

This paper has discussed a tool for system-level optimization using graph-based partitioning and
tree-based matching of large intrusion detection pattern databases. By optimizing at a system
level and considering an entire set of patterns instead of individual string matching units, our tools
allow more efficient communication and extensive reuse of hardware components for dramatic
increases in area-time performance.

After a small preprocessing phase, our tool automatically generates designs with competi-
tive clock frequencies that are a minimum of 2x more area efficient than any other discrete-
comparator-based shift-and-compare design, and runs at roughly 2.0 Gbps.

We release the collection of tools used in this paper to the community at
http://halcyon.usc.edu/~zbaker/idstools

References

1. Hutchings, B.L., Franklin, R., Carver, D.: Assisting Network Intrusion Detection with Reconfigurable
Hardware. In: Proceedings of FCCM ’02. (2002)

2. Cho, Y.H., Navab, S., Mangione-Smith, W.H.: Specialized Hardware for Deep Network Packet
Filtering. In: Proceedings FPL ’02. (2002)

3. Sourdis, I., Pnevmatikatos, D.: Fast, Large-Scale String Match for a 10Gbps FPGA-Based Network
Intrusion Detection System. In: Proceedings of FPL ’03. (2003)

4. Gokhale, M., Dubois, D., Dubois, A., Boorman, M., Poole, S., Hogsett, V.: Granidt: Towards Gigabit
Rate Network Intrusion Detection. In: Proceedings of FPL ’02. (2002)

5. Moscola, J., Lockwood, J., Loui, R.P., Pachos, M.: Implementation of a Content-Scanning Module
for an Internet Firewall. In: Proceedings of FCCM ’03. (2003)

6. Sourcefire: Snort: The Open Source Network Intrusion Detection System. http://www.snort.org

(2003)
7. Hogwash Intrusion Detection System: (2004) http://hogwash.sourceforge.net/.
8. Moisset, P., Park, J., Diniz, P.: Very High-Level Synthesis of Control and Datapath Structure for

Reconfigurable Logic Devices. In: Proceedings of the Second Workshop on Compiler and Architecture
Support for Embedded Systems (CASES’99). (1999)

9. So, B., Hall, M.W., Diniz, P.C.: A Compiler Approach to Fast Design Space Exploration in FPGA-
based Systems. In: Proceedings of the ACM Conference on Programming Language Design and
Implementation (PLDI’02). (2002)

10. Haldar, M., Nayak, A., Shenoy, N., Choudhary, A., Banerjee, P.: FPGA Hardware Synthesis from
MATLAB. In: Proceedings of VLSI Design Conference. (2001)

11. Global Velocity: (2004) http://www.globalvelocity.info/.
12. Clark, C.R., Schimmel, D.E.: Efficient Reconfigurable Logic Circuits for Matching Complex Network

Intrusion Detection Patterns. In: Proceedings of FPL ’03. (2003)
13. Baker, Z.K., Prasanna, V.K.: A Methodology for the Synthesis of Efficient Intrusion Detection

Systems on FPGAs. Accepted for publication at FCCM ’04 (2004)
14. Baker, Z.K., Prasanna, V.K.: Time and Area Efficient Pattern Matching on FPGAs. In: Proceedings

of FPGA ’04. (2004)
15. Karypis, G., Aggarwal, R., Schloegel, K., Kumar, V., Shekhar, S.: METIS Family of Multilevel

Partitioning Algorithms (2004) http://www-users.cs.umn.edu/~karypis/metis/.

