
A Methodology for Synthesis of Efficient Intrusion Detection Systems on FPGAs1

Zachary K. Baker and Viktor K. Prasanna
University of Southern California, Los Angeles, CA, USA

zbaker@halcyon.usc.edu, prasanna@ganges.usc.edu

Abstract

Intrusion detection for network security is a computa-
tion intensive application demanding high system perfor-
mance. System level design, a relatively unexplored field
in this area, allows more efficient communication and ex-
tensive reuse of hardware components for dramatic in-
creases in area-time performance. By applying optimiza-
tion strategies to the entire database, we reduce hardware
requirements compared to architectures designed with sin-
gle pattern matchers in mind. We present a methodology
for system-wide integration of graph-based partitioning of
large intrusion detection pattern databases. Integrating
ruleset-based graph creation and min-cut partitioning, our
methodology allows efficient multi-byte comparisons and
partial matches for high performance FPGA-based network
security. Through pre-processing, this methodology yields
designs with competitive clock frequencies that are a min-
imum of 8x more area efficient than any other shift-and-
compare architectures, and 2x that of other predecoded ar-
chitectures.

towards

1 Introduction

Pattern matching for network security and intrusion de-
tection demands exceptionally high performance. Much
work has been done in this field [3, 4, 5, 8, 13, 16], and yet
efficient, flexible, and powerful systems still have signifi-
cant room for improvement. Methods commonly used to
protect against security breaches include firewalls with fil-
tering mechanisms to screen out obviously dangerous pack-
ets, and intrusion detection systems which use much more
sophisticated rules and pattern matching to sense poten-
tial malicious packets. These techniques require significant
computational resources, and, using highly-parallel flexible
fabrics such as FPGA, provide opportunities for dramatic
improvements.

1Supported by the United States National Science Foundation/ITR un-
der award No. ACI-0325409 and in part by an equipment grant from the
HP Corporation.

Snort, the open-source IDS [15], and Hogwash [1] have
thousands of content-based rules. A system based on these
rulesets requires a hardware design optimized for thousands
of rules, many of which require string matching against the
entire data segment of a packet.

Previous designs have had excellent single-pattern per-
formance, but when integrated into a system, their area-
time performance plunges due to poor resource usage and
interconnect and routing complexity. No longer can pattern
matching systems be judged on the characteristics of a sin-
gle matching unit. In a real environment where thousands of
rules must coexist on a single FPGA, the pervasive match-
ing unit-level view of Intrusion Detection cannot persist.

����� � ��� �
	
��� �������

� � ����� �
� � �����

����� � � ����

� � ���� �
� � ���
��������

����� � � � � ���
� � �����

��� ��������������� � � � � �������
� � ������! ���"�
� ���# � ���

$%� ����� � ���&� '� �

� ������� ��� �
(�) ��� ������ *�����# �

�!+%	%,

(�) ��� ������� �-����
�.# �����/�����/0��'�� �

Figure 1. Process flow for synthesis of parti-
tioned system

By carefully and intelligently processing an entire rule-
set (Figure 1), we can partition a ruleset in order to optimize
the area and time requirements of the system. By applying
graph theory techniques early in the circuit design problem,
we can produce efficient, highly parallel hardware backend
technology for string matching, specifically directed toward
intrusion detection and response applications. We provide
dramatic improvements over the state-of-the-art, with ini-
tial results demonstrating that system of several hundred
patterns, with a total of over 8200 characters, can operate
at over 250 MHz, with a throughput/area performance 8x
that of similar “shifting” architectures [16, 4], and 2x that
of other predecoded architectures [5].

This paper consists of a brief review of previous work
in string matching for network security, followed by an in-
troduction to our approach. Section 4 describes our ideas

1

regarding the use of simple architectures made efficient
through complex preprocessing. Next, we discuss the tool
we have developed for automatically applying our optimiza-
tions and generating hardware descriptions. In Section 6 we
provide the result of our experiments, and then finish with a
description of a new strategy we have explored for increas-
ing the throughput and efficiency of the design.

2 Related Work

Snort [15] is a current popular option for implement-
ing intrusion detection in software. It is an open-source,
free tool that promiscuously taps the network and observes
all packets. After TCP stream reassembly, the packets are
sorted according to various characteristics and, if necessary,
are string-matched against rule patterns. However, the rules
are searched sequentially on a general-purpose micropro-
cessor. This means that the IDS is easily overwhelmed by
consistently high rates of packets. The only option given by
the developers to improve performance is to remove rules
from the database or allow certain classes of packets to pass
through without checking. Some hacker tools even take ad-
vantage of this weakness of Snort and attack the IDS it-
self by sending worst-case packets to the network, causing
the IDS to work as slowly as possible. If the IDS releases
some uninspected packets to prevent buffer overflow, the
uninspected packets provide an opportunity for the hacker.
Clearly, this is not an effective solution for a maintaining a
robust IDS.

SiliconDefense [9] has implemented a software tree-
searching strategy that uses elements of the Boyer-Moore
and Aho-Corasick algorithms to produce a more efficient
search of matching rules in software.

Hardware, particularly FPGA-based approaches, can
provide much higher performance through streaming,
highly parallel archictures. We will review some of the re-
cent works here.

In [13], a multi-gigabyte pattern matching tool with full
TCP/IP network support is described. The system demulti-
plexes a TCP/IP stream into several substreams and spreads
the load over several parallel matching units using Deter-
ministic Finite Automata pattern matchers. In their archi-
tecture, a full place-and-route and reconfiguration is cur-
rently estimated at 7-8 minutes. Unfortunately, their perfor-
mance drops dramatically when more than a few rules are
integrated into the system, and there seems to be no solution
at present to the slowdown problems.

A more powerful work from the same group, in [6],
is a novel hashing mechanism utilizing the Bloom filter.
Their implementation of a hashing-table lookup using a
Bloom filter is an effective method to search thousands of
variously-sized patterns for matches in a single pass.

In [4, 16], a hardwired design is developed that provides

high area efficiency and high time performance by using
replicated hardwired 32-bit comparators in a pipeline struc-
ture. The matching technique proposed is to use four 32-bit
hardwired comparators, each with the same pattern offset
successively by 8 bits, allowing the running time to be re-
duced by 4x for an equivalent increase in hardware. The
authors use about 100 rules, “the most common attacks,”
and have implemented only these patterns in the FPGA. The
main weakness are the p2 increase in hardware for a p in-
crease in throughput.

Finite state machine implementations have drawn re-
search interest as well. We developed the use of non-
deterministic finite automata for string matching in [14].
This work was extended for use in network security in [8],
but it was found that the approach does not scale well. De-
vice frequency trends downward dramatically as the num-
ber of rule increases above a few dozen. In [5] the scaling
problem is addressed through a pre-decoding strategy, con-
verting characters to single bit lines in the cycle before they
are required in the state machine. This has proved effective
in reducing the area of designs and allowing more patterns
to be packed in a given FPGA device.

This paper is related to our work in [3], in which we
developed a novel linear-array string matching architecture
using a buffered, two-comparator variation on the Knuth-
Morris-Pratt (KMP) algorithm. For small (16 or fewer char-
acters) patterns, it compares favorably with the state-of-the-
art in performance efficiency while providing better scala-
bility and reconfiguration, and more efficient hardware uti-
lization. While this paper continues to focus on the opti-
mization of area-time performance, we move forward using
a novel preprocessing of rulesets. In the next section, we
discuss our approach using preprocessing, and some of the
encoding ideas independently developed in [5], and high-
throughput, low-area evolutions of the simple, brute-force
matching architectures of [4, 16].

3 Our Approach

Most previous research on high-performance string
matching has been centered around the performance of sin-
gle matching units. High performance is achieved for these
single units, but system performance is not emphasized, be-
cause, for the most part, increasing the size of the rulesets
dramatically decrease the performance of the systems. Most
designs are dependent on either high on-chip bandwidth al-
lowing data to be shuttled to large matching units, or fairly
high percentages of control routing and high logic complex-
ity. Both of these characteristics lead to poorly scaling sys-
tem designs.

Carefully partitioning rule databases allows a system to
more effectively utilize its hardware resources. The key
to our performance gains is the idea that patterns sharing

2

characters do not need to be redundantly compared. Redun-
dancy is an important idea throughout string matching; the
Knuth-Morris-Pratt algorithm[3, 12], for instance, uses pre-
computing redundancy information to prevent needlessly
repeating comparisons. We utilize a more dramatic ap-
proach; by pushing all character-level comparisons to the
beginning of the comparator pipelines, we reduce the single
character match operation to the inspection of a single bit.

Previous approaches to string matching, excepting [5],
have centered around a byte-level view of characters. High
performance designs even increased the base comparison
size to 32 bits, providing high throughput by processing
four characters per cycle. Increasing the number of bits
processed at a single comparator unit increases the fan-in
to single gates. Our approach moves in the opposite direc-
tion, to single-bit, or unary, comparisons. We decode an
incoming character into a “one-hot” bit vector, in which a
character maps to single bit. This early decoding is referred
to as “shared decoding” in [5].

Unfortunately, without some reduction in the character
set, unary representations are almost entirely useless due
to the level of inefficiency caused by the huge number of
bit lines required for the 256 character ASCII set. How-
ever, if the character set can be reduced, the number of bit
lines can be dramatically reduced. The most trivial example
of reduced sets is DNA matching, where the only charac-
ters relevant are A,T,C,G, represented as four one-hot bits.
A more interesting example is string matching for network
security, where thousands of patterns need to be matched
simultaneously at high throughput rates.

Because intrusion detection requires a mix of case sen-
sitive and insensitive alphabetic characters, numbers, punc-
tuation, and hexadecimal-specified bytes, there is an inter-
esting level of complexity. However, each string only con-
tains a few dozen characters, and those characters tend to re-
peat across strings. Using techniques from graph theory, the
patterns are partitioned n-ways such that the number of re-
peated characters within a partition is maximized, while the
number of characters repeated between partitions is mini-
mized, the system can be composed of n pipelines, each
with a minimum of bit lines.

The results presented later in this paper use a series of 4
sets of patterns, all subsets of the Nikto ruleset of the Hog-
wash database [1]. We have arbitrarily selected sets of 204,
361, 602, and 1000 rules to provide some idea as to the
scaling behavior of the systems.

4 Simple Architectures, Complex Prepro-
cessing

Our unary design utilizes a simple pipeline architecture
for placing the appropriate bit lines in time (Figure 2). Be-
cause of the small number of total bit lines required (gen-

erally around 30) and extensive pipelined fanout to the in-
dividual comparators, adding delay registers adds little area
to the system design. The new design takes the the gen-
eral brute force matching technique used by UCLA [4] and
Crete [16] and moves the character decoding to the first
stage in the pipeline, and reduces the overall size of the in-
dividual comparators by one-eighth. Each pipeline contains
only the characters required by the patterns for which the
pipeline is responsible. The length of each pipeline is equal
to the length of the longest pattern in the pipeline. The max-
imum latency of the system as a whole is equal to the length
of the longest pipeline plus some lead-in and lead-out cy-
cles for collecting results from each pipeline and providing
a few register stages to and from the IO pads. The lead-in is
3 cycles, and the lead-out is 8 cycles for systems with less
than 500 rules and 4 for larger systems.

The first and obvious problem is the number of charac-
ters that might need to be matched for any input pattern.
Data is encoded for a reason, after all, and having a bit
for every character is not efficient. The routing of a large
amount of bit lines is fairly expensive, but because of the
pipelining between units, there is little time performance
penalty. If the design automation tools can partition a rule-
set to 30 bits, or roughly the same amount of data routing
as in [16], and then make the actual matching units at least
8x smaller (32 down to 4 bits for [4]), we can expect to see
dramatic performance (area-time) increases.

In the whole of the Snort database, there are only about
100 different characters ever matched against. Some of
those are case insensitive, or can be made case insensi-
tive without loss of generality, reducing the number of
unique characters to roughly 75. Hexadecimal-specified
non-character bytes are expanded to equivalent character
representations. The next step is to partition the patterns
into several groups such that the minimum number of char-
acters have to be piped through the circuit; that is, we give
each group of patterns a pipeline, and go through various
heuristic tricks to attempt to reduce the pipeline register
width.

The graph creation strategy is as follows. We start with
a collection of patterns, represented as nodes of a graph.
Each pattern is composed of characters. Every node with
a given letter is connected by an edge to every other node
with that letter. In Figure 3 we illustrate this operation in
pseudo code, leading to the graph definition in Figure 4.

This produces a densely connected graph, almost 40,000
edges in a 361 vertex graph. Our objective is to partition
the big graph into two or more smaller groups such that the
number of edges between nodes within the group is maxi-
mized, and the number of edges between nodes in different
groups is minimized. Each pipeline supplies data for a sin-
gle group. By maximizing the edges internal to a group and
minimizing edges outside the group which must be dupli-

3

�

C

���

���

���

A
��	

�
�

���

���

T
�	

��

��

��

��	

match

� �������
� ���
������� � �! " �

Figure 2. Illustration of unary pre-decoded architecture

create graph vertex for each pattern in ruleset;

for each pattern L in ruleset
for each pattern K in ruleset not L

if some character in pattern(L) matches some character in pattern(K)
add edge between vertex L and vertex K

Figure 3. Graph creation before partitioning

Sk = {a : a ∈ C | a appears in k}

VR = {p : p ∈ T}

ER = {(k, l) : k, l ∈ T, k 6= l and Sk ∩ Sl 6= ∅}

Figure 4. Graph creation before partitioning;
a vertex is added to graph R for each pattern p
in the ruleset T and an edge is added between
any vertex-patterns that have a common char-
acter in the character class C

cated, we reduce the width of the pipeline registers, but im-
prove the usage of any given character within the pipeline.

This problem is a standard graph theory problem in phys-
ical design automation known as “mincut” problem. A sin-
gle circuit needs to be split into two chips, but the two sec-
tions are interdependent. The mincut solution minimizes
the number of wires connecting the two chips, thus decreas-
ing the number of pins and reducing energy consumption
and clock period. The most popular strategy is an iterative
improvement heuristic by Kernighan and Lin [11] (1970).

A key contribution of this paper is the dramatically re-
duced complexity of the mincut operation by partitioning
not netlists, but the set of patterns. Because the operation
is at a much higher level, at the layer of the patterns and

#%$%& & ')(*,+

- $).!/0'�(

1 .!2�354 '!6�'.!($).!/7')(

#%$�& & '�(*!8

(9)9%&

Figure 5. Unpartitioned graph of all patterns;
each node is a pattern and each edge is a
common character

character similarities rather than gates and wires, the sys-
tem not only requires much less pruning by the synthesis
tool, but allows for much easier pre-synthesis performance
estimation.

These characteristics allow the designer to more easily
create multi-device detection systems. However, it is not
necessary to turn to multiple devices, as simply creating in-
dependent pipelines on a single chip can reduce clock pe-
riod by reducing routing delays. Section 6 shows that plac-
ing partitioned pipelines on a single device can yield a clock
period as much as 20% lower than an unpartitioned system
with the same functionality.

4

����� �����	��

����� ��������
�������

� ���������

�������������

� ������� �����

Figure 6. Partitioned graph; by reducing the
cut between the partitions we decrease the
number of pipeline registers

5 VHDL Synthesis Tool

In order to partition the graphs and generate correspond-
ing hardware descriptions, we utilize a tool we developed,
described in [2]. Utilize the METIS graph partitioning li-
brary [10], the graph is partitioned into separate sections
for separate synthesis. Each pattern within a given partition
is written out, and a VHDL file is generated for each par-
tition. If the partitions are to be placed on a single device,
a VHDL wrapper is also generated appropriately given the
partitioning parameters. This process is very efficient, tak-
ing less than 10 seconds on a Pentium III-based machine.
The size of the VHDL files for the 361 ruleset total roughly
300 kB, but synthesize to a minimum of 715 slices, or 1430
logic cells. While the automation tools handle the system-
level optimizations, the FPGA synthesis tools handle the
low-level, logic pruning operations. This allows the VHDL
generation after partitioning to proceed unintelligently, cre-
ating a full pipeline for the depth of the maximum length
pattern for each character utilized in the set of patterns in-
cluded in the partition. During synthesis, the logic that is
not required is pruned – if a character is only utilized in the
beginning of a pattern, it will not be carried to the end of
the pipeline. If a character is only used by one pattern in the
ruleset, and in a sense wastes resources by inclusion in the
pipeline, pruning can at least minimize the effect on the rest
of the design.

One question that might be raised is in the scaling of
the graph creation. To implement the pseudo code in Fig-
ure 3, we require an outer and an inner loop to compare all
patterns k and l; the outer loop requires n iterations, and the
inner loop requires n−1 iterations. Comparing the utilized-
character sets Sk and Sl requires a number of comparisons
equal to the product of the size of the two sets.

The total number of character comparisons during the
graph creation operation is

n∑

i=1

n∑

j=1

(|Si| |Sj |) −
n∑

i=1

|Si|
2

The worst case graph size is (n − 1)(n)/2 edges for n
vertices.

The size of the utilized-character sets are limited in size,
generally less than 50 and average between 10 and 20. For
our analysis, we can consider them constant, making the
time complexity of the sort O(n2), with a space complexity
of O(n2).

The time complexity of general graph partitioning prob-
lem using the Kernighan-Lin algorithm is O(n2 log n), with
a space complexity equal to the size of the input graph. Thus
the time complexity of the complete process is O(n2 log n)
with a space complexity of O(n2).

Because of the large number of patterns in current in-
trusion detection databases [15, 1], creating the pattern-
connection graphs and subsequently partitioning the graphs
is an expensive operation.However, even with the large
memory requirements for representing the graphs, the pro-
cess flow requires little time. Several hundred rules can be
compiled into a graph, the graph can be partitioned, and the
partitions can be generated in less than ten seconds. With
several thousand rules, compilation times run into the min-
utes. However, all code except the partitioning tool is writ-
ten in Perl, a runtime language. Regardless of the imple-
mentation, the automatic design tools occupy only a small
fraction of the total hardware development time, as the place
and route of the design requires orders of magnitude more
time.

6 Performance Results

This section will present results based on the graph gen-
erated, partitioned pipelines generated automatically by our
tool. The results are based on rulesets of 204, 361, 602, and
1000 patterns, subsets of the Nikto ruleset of the Hogwash
database [1]. The main trend we see in the results is that the
predecoded unary architecture provides dramatic area im-
provements and good time performance. We then trade a
small amount of the area improvement for up to a 20% in-
crease in time performance through the use of partitioning.

Many previous papers on network string matching have
provided fast throughput on a few patterns but have not been
able to scale well because of fanout delays and the complex-
ity of their matching units. This puts a severe limitation
to their application in real network security applications,
where hundreds if not thousands of rules must be simultane-
ously matched at line rates. Other designs [4, 16], with their
small, simple pipelined and hardwired design, have come
closer to producing efficient designs as the they can fit one
hundred or so of the most common patterns on a device.
Unfortunately, as the number of pattern matching units in-
creases the system speed drops dramatically, and, as par-
allelism increases, the area requirements increase quadrat-
ically. Because of these concerns we define our perfor-

5

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

Number of Partitions

C
lo

ck
 P

er
io

d
 (

n
s)

204

361

602

1000

Figure 7. Clock period results for various
numbers of partitions for 204, 361, 602, and
1000 patterns

mance metric as throughput (freq * number of bits per cy-
cle) divided by the size of an average pattern (using the per-
character numbers from [16]). This metric rewards systems
that have small and highly efficient units, but also those with
high operational frequency and parallelism.

The results comparison is based on a 16 character pat-
tern. The area of a 16 character pattern is determined from
the published information, namely the full system area and
the total number of characters matched, and then scaled to
a 16 character pattern. While the capabilities of each of the
other architecture we compare against vary greatly, as some
architectures include support for regular expressions, use of
external memory, full TCP stacks, and various FPGA de-
vices, we present the data here so as to give an idea as to
where the field stands. The most useful data is the area ef-
ficiency, which can be compared fairly between hardware
families and generations.

We utilized our tool described in Section 5 to generate
system code for various numbers of partitions. Tables 2, 3,
4, and 5 contain the system characteristics for this architec-
tural design, with the system clock and area, the average
partition area based on the number of partitions, and the
area and clock rate of the first partition (as implemented
separately). We provide as a baseline [5] as they also im-
plement a pre-decoded unary architecture. Table 1 contains
comparisons of our system versus designs from other re-
searchers. Figure 7 and 8 contain area and speed data for
various number of partitions for 204, 361, and 602 patterns.

In Table 2, 3, 4, and 5 we see that the maximum sys-
tem clock is around 250 MHz for all designs. The system
area increases as the number of partitions increases, but the
average partition area decreases consistently with increas-
ing partitions. Our clock speed, for an entire system, is in
line with the fastest single-comparator designs of other re-

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9

Number of Partitions

A
re

a
 (s

lic
es

)

204

361

602

1000

Figure 8. Average partition area (in slices) for
various numbers of partitions for 204, 361,
602, and 1000 patterns. Note that the areas
approaches lower limits as the number of par-
tition increase, implying the number of parti-
tions should be kept at a minimum

search groups. The startling result is the comparison of per-
character area requirements with other designs. The small-
est of designs in the published literature is in [8], imple-
menting a Non-determinisic Finite Automata in hardware.
That design occupies roughly three logic cells per charac-
ter. Our design occupies 0.35 logic cells per character (0.17
slices per character), or almost 2.8 characters per logic cell.
This is an 8x improvement in efficiency over other shift-
and-compare architectures [4, 16] (after allowing for a 4x
increase in hardware due to higher throughput), and a 2x
improvement over the unary-based NFA design in [5].

Figure 7 shows the clock period of a single-chip system
using various numbers of partitions. We see that partition-
ing can cause the clock period to be reduced by as much as 1
ns., or a full 20% in some cases. It is interesting to note that
the effect of the partitioning is unpredictable for fewer than
4 partitions: maxima and minima occur at the same number
of partitions for various number of rules. However, while it
is useful to break designs into multiple chips, it is clear that
large numbers of partitions for a small number of rules pro-
vide no area benefit. While time performance is increased,
the throughput/area performance metric is compromised by
more than 3-4 partitions. Due to the exceptional area ef-
ficiency provided by the unary representation, though, we
can easily afford to trade area for time performance. While
the overhead of replicating comparators for many charac-
ters in each partition causes a reduction in efficiency, for
larger rulesets (into the thousands of patterns), partitioning
into dozens of independent pipelines may prove to be an
effective strategy.

The dramatic improvement in area efficiency due to the
unary strategy, and the partitioning possible due to the pre-

6

Design Throughput Unit Size Performance
USC Unary (1 byte) 1.79 Gb/s 5.7 315
USC Unary (4 byte) 6.1 Gb/s 22.3 271
USC Unary (8 byte) 10.3 Gb/s 32.0 322
USC Unary (Prefilter) 6.4 Gb/s 9.4 682
Los Alamos[7] 2.2 Gb/s 243 9.1
Wash U.2[13] 0.952 Gb/s 260 1.8
UCLA[4] 2.88 Gb/s 160 18.0
U/Crete[16] 10.8 Gb/s 269 40.1
GATech[5] 0.8 Gb/s 12.8 62.1

Table 1. Throughput, unit size per 16 byte pattern (in logic cells; one slice is two logic cells), and
performance (in Mb/s/cell). Throughput is assumed to be constant over variations in pattern size

Number of Partitions [5] 1 2 3 4 8
System Clock (ns) 10 4.179 4.457 3.863 3.986 4.174
System Area (slices) 1807 800 957 1043 1107 2007
Partition Area (avg) 1807 800 478 347 276 250
Single Pipeline area 1807 800 527 306 394 299
Single Pipeline clock 10 4.179 4.326 4.285 4.381 4.209

Table 2. Performance results using various numbers of partitions compared against the shared-
decoder architecture in [5]. The total number of characters before partitioning is 4518 over 204
rules

processing of patterns and their unary representations has
serious repercussions in the number of patterns that can be
matched with a single device, the energy expenditure of the
device, and the possibility of placing other complex struc-
ture on the device at the same time. One disadvantage of
this work, however, is the requirement for place-and-route
to make any change in patterns, unlike the designs in [3, 6].

Figure 8 shows the average number of slices per partition
for various numbers of partitions over the three sets of pat-
terns. This chart shows that increasing the number of parti-
tions for a multi-device system is ineffective for small pat-
tern sets due to overhead redundancy, but is progressively
more effective as the size of the pattern set increases.

For the 361 pattern, 8263 character system, the character
graph can be generated, partitioned, and the final synthe-
sizeable, optimized VHDL is created in less than 10 sec-
onds on a Pentium III 800 MHz with 256 MB RAM. The
1000 pattern system requires roughly 30 seconds. The syn-
thesis and place and route is executed on a four processor
Pentium Pro time-sharing system with 1GB of RAM, and
takes roughly 10 minutes using “highest” place-and-route
effort. The synthesis tool is Synplicity Synplify Pro 7.2 and
the place and route tool is Xilinx ISE 5.2.03i. The target
device is the Virtex II Pro XC2VP100 with -7 speed grade.

2Each unit in this design advances by one byte in each cycle, but the
system is composed of four units working in parallel, increasing the total

7 High-throughput Architecture
The basic architecture described earlier emphasizes both

time and area performance, but is centered around an 8-bit
input stream. While the frequency performance of the gen-
erated architectures is very high, the 8-bit input limits the
throughput potential. At 8-bits per cycle, in order to reach
a 10 Gbps rate, the device would have to run at 1.25 GHz.
Clearly, current FPGA technology cannot support this. The
best option, therefore, is to increase the datapath width into
the device. The use of k-byte data words complicates the
design, however, because now k essentially separate pattern
offsets must be detected. That is, we have to guarantee that
the beginning of a pattern will start on a word boundary,
and thus while we may launch the network stream into the
pipeline at k-bytes per cycle, k separate offsets must be de-
tected as well. Thus, the final comparator stage of a 1000
pattern database now presents roughly the routing complex-
ity as a 1000k pattern database.

This allows us to easily reach much higher throughput
rates while not requiring

We illustrate our 4-way architecture in Figures 9 and 10.
It is important to note that while the front and back end com-
parators are replicated k times, the pipeline itself is short-
ened by k times, providing some relief from the increase in
area. The results of our experiments are shown in Table 6.

throughput to at least 2.4Gb. We consider only a single unit.

7

Number of Partitions [5] 1 2 3 4 8
System Clock (ns) 10 4.93 4.497 4.798 4.244 5.193
System Area (slices) 3305 1198 1394 1604 1692 1891
Partition Area (avg) 3305 1198 697 534 399 236
Single Pipeline area 3305 1198 847 737 537 434
Single Pipeline clock 10 4.93 4.95 4.967 4.478 4.46

Table 3. Performance results using various numbers of partitions compared against the shared-
decoder architecture in [5]. The total number of characters before partitioning is 8263 over 361
rules

Number of Partitions [5] 1 2 3 4 8
System Clock (ns) 10 5.333 5.603 4.556 5.063 4.602
System Area (slices) 4930 2466 3117 3607 4264 5673
Partition Area (avg) 4930 2466 1558 1202 1066 709
Single Pipeline area 4930 2466 1657 1350 994 803
Single Pipeline clock 10 5.333 5.228 4.875 4.872 4.781

Table 4. Performance results using various numbers of partitions compared against the shared-
decoder architecture in [5]. The total number of characters before partitioning is 12325 over 602
rules

For these experiments, we have utilized the optimal number
of partitions from the basic unary architecture. Overall, it is
clear that the increase in area is less than k times the 8-bit
architecture, and the decline clock frequency is acceptable.

8 Pre-filtering Architecture

In Table 1 we notice the remarkable throughput possible
in the shift-and-compare designs of [4] and [16].

The pattern the system is searching for can occur start
at any byte position within an input string. That is, there
is no guarantee that the start of an offending input will be
word-aligned. Thus, replication of matching hardware is
required to avoid missing non-32 bit word-aligned strings.
Because a single character is expressed as an encoded 8-bit
form, accepting 4 characters at a time makes it impossible
to accurately match a input string with a single comparator.
Instead, four comparators are utilized, each with the pattern
offset by a large amount to match all possible starting po-
sitions of a character string. This increases the resource re-
quirements for 32-bit architectures dramatically. However,
using our architecture, the amount of replication is reduced.

Our 32-bit architecture is a sum-of-products design that
allows 4 bytes to be matched per cycle with an increase only
in pred-decoding logic, with little increase in routing area or
the number of matching comparators. The use of the same
datapath is possible by allowing some uncertainty into the
design. That is, the character comparators at the start of the
pipeline are replicated four times, and the OR of their out-
puts is fed into the unary character pipeline. This allows

up to 4 unary bit lines to be active in the previously one-
hot system in any given pipeline stage. In this setup, each
pattern can be properly matched at 4 different offsets, nec-
essary to allow for 32 bits to be accepted in each cycle. The
pattern comparators in the pipeline operate normally.

However, improper matches (false positives) can occur if
characters in the wrong offset happen to be triggered. That
is, “cat” and “cct” or “caa” will all trigger a match. Each
improper pattern match has a character that is valid in a dif-
ferent alignment. A negative result guarantees that the input
stream never matches any of the patterns. A positive result
means that the input stream may match the input, and some
post processing is necessary.

We implemented the 204 pattern ruleset with the addi-
tional front-end comparators. Our four-byte design runs at
200 MHz and occupies only moderately more area, increas-
ing from 957 slices for the original design up to 1270 slices
in exchange for four times more throughput. At 32 bits per
cycle, a 200 MHz system can match at 6.4 Gb/s.

The main problem with increasing throughput using
time-overlapped multiplexing is the potential for false pos-
itives. Like [6], there is no possibility of false negatives,
but there is an increasing likelihood of false positives as the
number of independent streams increases. However, when
used as a high-throughput prefilter, it is reasonable to place
a second filter behind the prefilter, allowing the secondary
filter to perform more complex and exact processing at a
much slower rate.

This work can be compared effectively against the
Bloom filter in [6] as they both produce results that have

8

Number of Partitions [5] 1 2 3 4 8
System Clock (ns) 10 5.41 5.17 5.60 5.22 4.93
System Area (slices) 7833 4028 4693 5001 5285 6123
Partition Area (avg) 7833 4028 1585 1670 1365 771
Single Pipeline area 7833 4028 2928 2474 2307 1778
Single Pipeline clock 10 5.41 4.89 4.68 4.60 4.53

Table 5. Performance results using various numbers of partitions compared against the shared-
decoder architecture in [5]. The total number of characters before partitioning is 19584 over 1000
rules

� �������	� ��

������ ����� ���

� �

C A T

C A T

C A T

C A T

�

�

�

�

�

�

�

�

Figure 9. Illustration of 4-way front end. Character decoders are replicated to allow for four different
beginning offsets

some possibility of false positives. The Bloom filter pro-
vides matching against thousands of patterns at 2.4 Gb/s, at
an unit area cost of 1.4 logic cells required for a 16 charac-
ter pattern (on average). While we can match at 6.4 Gb/s,
our false positive rate is much higher.

9 Conclusion

This paper has discussed a methodology for system-wide
integration of graph-based partitioning of large intrusion de-
tection pattern databases. By optimizing at a system level,
considering an entire set of patterns instead of individual
string matching units, our strategy allows more efficient
communication and extensive reuse of hardware compo-
nents for dramatic increases in area-time performance.

Through pre-processing, this methodology yields de-
signs with competitive clock frequencies that are a mini-
mum of 8x more area efficient than any other shift-and-
compare architectures [16, 4], and 2x that of other prede-
coded architectures [5].

Our increased throughput design, at the expense of a high
false-positive rate, provides an area-time performance ap-
proaching than of the Bloom filter [6]. Our architecture and
pre-processing allows for area-efficient, high-performance
intrusion detection for network security.

References

[1] Hogwash Intrusion Detection System. http://
hogwash.sourceforge.net/.

[2] Z. K. Baker and V. K. Prasanna. Automatic Synthesis
of Efficient Intrusion Detection Systems on FPGAs.
Submitted to DAC ’04, 2004.

[3] Z. K. Baker and V. K. Prasanna. Time and Area Effi-
cient Pattern Matching on FPGAs. In Proceedings of
FPGA ’04, 2004.

[4] Y. H. Cho, S. Navab, and W. H. Mangione-Smith. Spe-
cialized Hardware for Deep Network Packet Filtering.
In Proceedings FPL ’02, Sept. 2002.

[5] C. R. Clark and D. E. Schimmel. Efficient Reconfig-
urable Logic Circuits for Matching Complex Network
Intrusion Detection Patterns. In Proceedings of FPL
’03, 2003.

[6] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and
J. Lockwood. Implementation of a Deep Packet In-
spection Circuit using Parallel Bloom Filters in Re-
configurable Hardware. In Proceedings of HOTi ’03,
2003.

9

�

�

�

�

�

��������������������

��� � 	

Figure 10. Illustration of 4-way back end matchers. The pipeline moves each block of decoded char-
acters forward by four character positions, and pattern comparators select each decoded character
line appropriately

Number of Number of Area Clock Period
Rules Partitions (slices) (ns)
200 3 3153 5.27

Four 400 4 4780 6.64
Way 600 3 9332 7.95

1000 8 15010 7.1
Eight 200 3 4525 6.2
Way 400 4 7737 7.24

Table 6. Performance results for 4 and 8-way architectures(32 and 64 bit datapaths, respectively)

[7] M. Gokhale, D. Dubois, A. Dubois, M. Boorman,
S. Poole, and V. Hogsett. Granidt: Towards Gigabit
Rate Network Intrusion Detection. In Proceedings of
FPL ’02, 2002.

[8] B. L. Hutchings, R. Franklin, and D. Carver. Assist-
ing Network Intrusion Detection with Reconfigurable
Hardware. In Proceedings of FCCM ’02, 2002.

[9] C. J. Joit, S. Staniford, and J. McAlerney. To-
wards Faster String Matching for Intrusion Detection.
http://www.silicondefense.com, 2003.

[10] G. Karypis, R. Aggarwal, K. Schloegel, V. Kumar, and
S. Shekhar. METIS Family of Multilevel Partition-
ing Algorithms. http://www-users.cs.umn.
edu/˜karypis/metis/.

[11] B. Kernighan and S. Lin. An Efficient Heuristic Proce-
dure for Partitioning Graphs, 1970. Bell System Tech.

[12] D. E. Knuth, J. Morris, and V. R. Pratt. Fast Pattern
Matching in Strings. In SIAM Journal on Computing,
1977.

[13] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos.
Implementation of a Content-Scanning Module for an
Internet Firewall. In Proceedings of FCCM ’03, Apr.
2003.

[14] R. Sidhu, A. Mei, and V. K. Prasanna. String Matching
on Multicontext FPGAs using Self-Reconfiguration.
In Proceedings of FPGA ’03, Feb 1999.

[15] Sourcefire. Snort: The Open Source Network In-
trusion Detection System. http://www.snort.
org, 2003.

[16] I. Sourdis and D. Pnevmatikatos. Fast, Large-Scale
String Match for a 10Gbps FPGA-Based Network In-
trusion Detection System. In Proceedings of FPL ’03,
2003.

10

